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IN MEMORIAM - ALAN H. STENNING 
by 

Willem Jansen 

In the fall of 1973 the community of mechanical engineers 
particularly those involved with turbomachinery received, 
with the deepest sorrow, the news of Alan Stenning's death. 

The event was particularly shocking to me since Alan 
contributed more than anyone else to my career. A few weeks 
after I arrived at M.I.T., Alan helped me along as one of his 
students to bridge the cultural and academic gap at the school. 
I performed miserably as his graduate student, but Alan 
continued to provide help. Alan alone was responsible for 
persuading me not to leave when my scholarship fund ran dry 
after one semester. He offered me a research assistantship 
which really launched my career. It was the most important 
event in my education. 

From 1960 to 1961 I worked for Alan at Northern 
Research. There I learned to admire his talents as an engineer 
without peer. The continuing growth of the firm can be traced 
to Alan's contributions during that period. I fondly recall the 
project we were engaged in that brought us both to 
McKeesport, Pennsylvania for fourteen days in a dilapidated 
hotel, surrounded by steel factories. The problem was a 
belligerent axial compressor that shed its blades every month 
due to an unexplained surge. Alan represented the user, while 
I represented the manufacturer. He solved the problem 
(fouling of the blades). 

Alan and I never lost touch, whether it was at an ASME 
meeting or during his consulting days at Northern Research. I 

remember one time in 1970 during a boring conference in San 
Diego when one day we decided to go sailing instead of at­
tending the conference. We toured the harbor in a rented boat 
and talked about writing books. Alan was philosophical and 
perceptive in his observations. His wise words then gave me 
insight I had never thought of. I enjoyed that day and felt it 
had been worth going to San Diego. 

The following papers show examples of Alan's techniques. 
In broad strokes he identifies the major effects and con­
centrates on analyzing these. He is able to make the necessary 
assumptions that render the problem manageable, a rare 
quality among academicians. Thus without much effort he 
established analytically what one can expect in practice. 

His grasp of fundamentals was phenomenal ("It's all 
Newton's Law," he was fond of saying). After a few months 
of study he would become an expert in the many fields he 
studied. He applied his techniques to such diverse topics as 
Partial Admission Turbines, Rotating Stall in Compressors, 
The Starting and Control of Nuclear Rockets (this treatise is 
my favorite; in only a few pages he marries Nuclear Physics to 
Turbomachinery to explain the fundamental behavior of 
Nuclear Rockets), Hydrogen Cavitation and the cause of early 
chemical rocket failures, and of course the distortion work. 

It is true that the following papers do not provide the latest 
information on the subjects. For example, the collection of 
papers given at the AGARD Conferences of 1974 (AGARD-
LS-72) provide a more up-to-date review of distortion effects 
and rotating stall in axial compressors. It is even doubtful if 
Alan would have allowed the publication of the present 
papers. However, the papers show Alan's technique and 
should be an inspiration to those who think that technology 
has become too difficult and one is helpless without the 
availibilty of a large computer. 
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A. H. Stenning 
Department of Mechanical 

Engineering and Mechanics, 
Lehigh University, 

Bethlehem, Pa. 18015 
(deceased) 

Inlet Distortion Effects in Axial 
Compressors 
Although uniform inlet conditions are highly desirable and system designers at­
tempt to insure distortion-free flow entering compressors, situations frequently 
arise in which substantial total pressure, velocity, and angle variations exist at the 
compressor inlet. Aircraft gas turbines are particularly prone to inlet distortion 
problems due to changes in aircraft attitude and the effect of the airframe on the 
inlet flow conditions, but industrial insallations may also suffer from inlet 
distortion in cases where poorly designed bends have been installed upstream of the 
compressor. In this paper, problems associated with inlet distortion are discussed 
and some of the simpler techniques for analyzing the effects of circumferential inlet 
distortion are presented. 

Types of Distortion 
Inlet conditions may be uniform circumferentially but 

distorted radially, or uniform radially but distorted cir­
cumferentially, or distorted both circumferentially and 
radially. With any type of distorton, some portion of the 
blading is likely to be operating under more unfavorable 
conditions than would occur with uniform flow at the same 
mass flow rate. In consequence, a performance penalty is 
usually associated with distortion. 

Pure radial distortion may be analyzed using the techniques 
presented in other papers on axisymmetric flow solutions and 
is essentially equivalent to the radial distortion presented to a 
high pressure compressor by a low pressure compressor under 
off-design conditions. In consequence, radial distortions will 
not be discussed further in this paper. 

A great deal of attention has been devoted to cir­
cumferential total pressure distortion, which frequently 
occurs in bifurcated inlet systems. Approximate methods of 
analysis have been developed for predicting the effects of 
circumferential distortion on compressor behavior, and for 
predicting the attenuation or amplification of the distortion 
pattern. 

Combined radial and circumferential distortion has so far 
proved extremely resistant to analysis, and designers have 
resorted to empirical correlations to estimate its influence on 
the compressor. 

Even if the mean flow is uniform, the instantaneous tur­
bulent flow pattern at the compressor face may be highly 
distorted (especially for supersonic inlets) and compressor 
response to transient distortion has been an important con­
sideration in several recent aircraft installations. 

Circumferential Total Pressure Distortion 

The simplest type of circumferential distortion, and the one 
which has received the greatest attention, is one in which the 
total pressure far upstream of the compressor varies with 

Pol 

/ P l = p 

Contributed by the Fluids Engineering Division for publication in the 
JOURNAL OF FLUIDS ENGINEERING, Manuscript received by the Fluids 
Engineering Division, January 23, 1975. 
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Fig. 1 Flow pattern for upstream for circumferential total pressure 
distortion 

angle d and the static pressure far upstream is uniform (Fig. 
1). The total pressure distortion then produces a 
corresponding distortion in velocity far upstream of the 
compressor. 

As a consequence of this velocity distortion, the flow 
coefficient cx/U varies around the circumference of the 
compressor and the pressure rise across the compressor also 
varies around the circumference. The resulting pressure 
variation and flow redistribution in front of and within the 
compressor changes the performance characteristic of the 
compressor and modifies the amplitude and shape of the 
distortion pattern. An engineer who must use the compressor 
as a component in a system is interested in both the effect of 
the distortion on compressor performance and the attenuation 
or amplification of the distortion pattern as it passes through 
the compressor, since the distortion leaving the compressor 
may influence other components (such as combustion 
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chambers) downstream. Analytical and experimental studies 
of inlet distortion have been aimed at obtaining a better 
understanding of both phenomena. 

Simple Analyses of Circumferential Distortion 

At the present time, it is still not possible to predict the 
undistorted performance of an axial compressor with com­
plete reliability even though the use of high speed computers 
has greatly improved the accuracy of performance analysis. 
In consequence, any attempt to calculate the distorted per­
formance and distortion attenuation of a multistage com­
pressor starting with no information other than the geometry 
of the blading is unlikely to be entirely successful. If, 
however, methods can be developed which use the known 
undistorted performance characteristic as a starting point to 
predict the behavior of the machine with distortion then the 
prospects for success are greatly improved since the analysis 
at least begins from the right place. 

A number of investigators have developed models for 
response to circumferential distortion which use the un­
distorted compressor performance or stage characteristics to 
predict the behavior with distortion [1 - 5]. These analyses in 
general are based on two assumptions. 

(a) The pressure rise across any stage at any cir­
cumferential position is a function only of the local flow 
coefficient, and is equal to the pressure rise of the stage at that 
flow coefficient when operating without distortion. 

i.e., 
Ap{6) 

1 -A u J 
• pu2 

(b) The static pressure after the last stator is uniform 
around the circumference. 

Assumption (a) has been found to be reasonably good 
provided that unsteady flow effects are negligible and 
crossflows between blade rows are small. Plourde and 
Stenning [3] have shown that assumption (b) is valid for high 
hub-tip ratio machines if the last stator maintains a constant 
exit flow angle round the annulus and adequate space is 
available for pressure adjustment downstream. 

These analyses yield simple solutions when the spacing 
between rotors and stators is so small that crossflows can be 
neglected within the compressor. In this situation, the flow 
rate through a segment dd of the annulus is the same at all 
axial positions and in consequence, according to assumption 
(a), the pressure rise across the compressor at that cir­
cumferential position is equal to the undistorted pressure rise 
corresponding to the local value of cx/U at the inlet blading. 
Thus, in regions where cx/U is higher than average the 

c„/U 
Fig. 2 

IGV R S 

© - * © 4U ® 
COMPRESSOR 

Fig. 3 Schematic of compressor 

pressure rise across the compressor will be low (point 1 in Fig. 
2) and in regions where cx/U is smaller than average the 
pressure rise will be high (point 2 in Fig. 2) unless point 2 
happens to be to the left of the surge line. 

Two of the simplest "zero crossflow" analyses are 
discussed in the next section. The first permits an estimate of 
the flow redistribution upstream and the attenuation of the 
distortion pattern within the machine, and the second predicts 
the effect of circumferential distortion on the performance 
map. 

Small Perturbation Zero Crossflow Analysis. Consider the 
compressor shown in Fig. 3. Far upstream, at station (T) 
where the static pressure is uniform around the cir­
cumference, let the tangential velocity be zero and let the axial 
velocity distribution be given by the expression 

cxi = cxl + esin(«0) (1) 

where e << c x\ 

cxi is the average axial velocity 
cn = 0 

If the inlet Mach number is small 

1 , 
Poi=Pi+ YPl 

Poi =P\ + -j Pi cx\2 + Pi cxi esin(«0) (2) 

-Nomenclature-

A = cross sectional flow area 
c = velocity 
F = dimensionless parameter 

- 1 dAp 

P\CX\ 9 c *2 

m = mass flow rate 
M = Mach number 
n = number of harmonic 
p = static pressure 

p0 = total pressure 
q = dynamic pressure 1/2 pc2 

r 
R 
t 

T 
T0 

u 
U 
V 

X 

y 

8 

radius 
total pressure ratio pol /p02 

time 
temperature 
total temperature 
axial velocity perturbation 
blade speed 
tangential velocity per­
turbation 
axial coordinate 
amplitude of static pressure 
distortion 
amplitude of total pressure 
distortion 

amplitude of axial velocity 
distortion far upstream 
tangential coordinate 
density 

Subscripts 

1 
2 
3 
X 

e 
L 
H 

= far upstream 
= compressor inlet 
= compressor exit 
= axial 
= tangential 
= low total pressure region 
= high total pressure region 
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neglecting e2 in comparison with cxl e. Furthermore, 

Pot =Poi + 5i sin(«0) (3) 

wherefy = P\CxXt and is equal to the amplitude of the total 
pressure distortion upstream of the compressor. 

Along any streamline, the total pressure remains constant 
upstream of the compressor and if the induced tangential 
velocities are small, then the total pressure will be only a 
function of 0 upstream of the compressor. Hence, at any 0, 
Poi = A ) 2 > a n d 

1 I 2 

Pi-Pi= y P i f e 
• c , 2 ) 

At (2) let c^ = cxl+cx: 

<-«2 — c92 
where c ^ ' ,cn' are of order e. 
Then 

1 
Pi-Pi= y P i [ ( ^ 2 + c w

2 ) - c x l
2 ] 

(4) P\ -Pi = Pi cx\ [c*2' ~ esin(«0)] 

at any 0, neglecting terms of order e2. 
At any circumferential position, the static pressure rise 

across the compressor is assumed to depend only on the local 
inlet flow coefficient c^/U, that is, only on the local inlet 
axial velocity. Hence, if the compressor static pressure rise is 
plotted as shown in Fig. 4 for the given rotational speed, as Ap 
l=p3-p2) versus C&, then the pressure rise at each cir­
cumferential position can be obtained if c^ is known. 
_ The average pressure rise across the compressor is given by 
Ap and occurs at points where c^ ' = 0 . 

At any other point 0 around the annulus, the static pressure 
rise across the compressor can be approximated by 

A/>(0): = 4 p + ^ C ; c 2 ' ( 0 ) 
dc 

(5) 
xl 

that is, by replacing the true shape of the characteristic in the 
vicinity of cxl by the tangent to the curve_ at cxl. This 
linearized approximation is valid if c^ ' < < cxl. 

Thus, along any streamline which starts far upstream and 
ends after the compressor we can say 

PT, -PI =(PI -PI)-(PI ~PI) 

!An 
[c^'-esin^nd)] 

— dAp = Ap+ i^c^1 

d o 
(6) 

Butpj is uniform around the annulus and is equal Xopx and 
Pi is uniform around the annulus and is ecjual top 3 . M o r e ­
over, for the undistorted flow field p2 = px. 
Hence 

Pi-Pi=Pi-P2=&P (7) 
That is, the static pressure rise from far upstream to far 
downstream is not altered by the addition of a small sym­
metric distortion which does not change the total mass flow 
rate. 

Substituting (7) in (6) and solving for c^ ' we obtain 

esin (nd) 
LX2 

1 dAp 

or 

where 

CyO = 

Plc
xl dcX2 

, esin (n6) 

l+F 

(8) 

(9) 

F= 
1 dAp 

Pi Cxl dc. x2 

Since no crossflows are assumed to occur within the 
compressor, the percentage variation in axial velocity around 
the annulus leaving the compressor will be the same as the 
percentage variation around the circumference entering the 
compressor, 

i . e . , 

and 

Cx2 

cxl 

"-(Sir) 
esin (nd) 

l + F 
(10) 

If the compressor has been designed for constant axial 
velocity then cx3 = cxl and 

esin (nd) 
cx3 —Qxl'- 1+F 

The axial velocity distortion is attenuated upstream of the 
compressor if F is positive, but is amplified if F is negative, 
that is, if dAp/dcx is positive. 

Moreover, if F = - 1 , then infinite amplification of any 
entry distortion can occur, or a finite circumferential 
distortion at the compressor inlet can be created by an in­
finitesimal distortion far upstream. Since the upstream 
conditions are never absolutely uniform, this is an indication 
of the possibility of an instability in the flow. It can be shown 
that the existence of an infinite amplification ratio can be 
associated with the occurrence of rotating stall. 

The attenuation or amplification of the total pressure 
distortion can now be calculated. 

Since the static pressure at (f) is uniform around the 
circumference, the total pressure variation at (3) is caused by 
the variation in velocity at (3). 

1 
Poi=Pi+ y P s f e s + C r f ' ) 2 

if cn is zero. Therefore, 

P03=P03+P3CxiCx3' 

Hence, the total pressure distortion at (5) 
c 3 ' . The ratio of the total pressure distortion leaving the 

(H) 
is equal tt^c^ 

machine to the total pressure distortion entering is 

°3 _ P3 cx3 cx3 

^1 Plcxlcxl' 

_̂ L = -£L (CJL- Y 
5, p, \cxl ' 

1 
(l+F) 

(12) 

For machines with high pressure ratios and hence large values 
of p3/pi, the total pressure distortion may be amplified even 
if F is positive. 

The attenuation of the axial velocity distortion which 
occurs upstream of the compressor induces a static pressure 
distortion at the compressor face. 

Pi -Pi =Pi?xi [cx2 ' ~esin(«0)] 

Pi ~Pi = Pi cxi «sin(«0) ( j - j -^ , j (13) 
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c x l 

Fig. 4 

The amplitude of the static pressure distortion at the 
compressor face is 

72=PlC* Vi+W 
The flow field upstream of the compressor may also be 

found using continuity and the fact that the vorticity along 
any stream-line remains constant between (T) and (2). 

Let the velocity field at any point upstream of the com­
pressor be represented by 

cx = cxX + esin(«0) + u (14) 

c0 = v (15) 

where u, v are of the order of e and represent the effect of the 
compressor on the upstream flow field. 

For incompressible flow (M < < 1), continuity yields 

dcr 1 dca 

dx r dd 

Hence 

du 1 dv I 

~dic + ~r dd J ~ 

Conservation of vorticity along streamlines gives 

Dtldx r dd J 

(16) 

i.e., 

£ r * - i * . i _ 0 (i7) 
DtL dx r dd 1 l ; 

^ = 1 ^ = 0 

But u, v are zero at x = — oo. 

Hence 

dv 

"die r dd 

everywhere upstream of the compressor. 
Solutions to (16) and (18) satisfying the boundary con 

ditions u,v ~ 0 as x — —oo are found in the form 

u=A„e"x/rsm(nff) 

v=Ane
nxlrcos(n6) 

At the compressor face, let* = 0. Then, at 

cx=cx + esin(«0) +/4„sin(«0) 

esin(«0) 

(18) 

(19) 

(20) 

= c, + 1 + F 
from (9) 

Hence 

A„+e = 
1 + F 

^ = - (TTF> (21) 

1.2 

1.0 

0.8 

0.6 

0.4 

0 

3 
y/81 

-8/S1 

A \ 

- 2 . 0 -1 .0 0 1.0 2.0 

AXIAL DISTANCE x / r 

Fig. 5 

02 

••o2H 

Zw 
•+*e 

Fig. 6 

Po3 

»VTB! -V^ 

Fig. 7 

and the solution for the flow field upstream of the compressor 
is 

\ + esm(nd) - (-—- J eenx/rsm(nd) 

Ft 

1 + F 
enxlrcos(nd) 

(22) 

(23) 

The above procedure was used in reference [3] and Fig. 5 
shows the predicted and measured total and static pressure 
distortion behavior for a three stage compressor. 

Parallel Compressor Model. The preceding analysis 
assumes that the distortion is small and hence that the average 
pressure rise across the compressor is unchanged by the 
presence of the distortion. Such an analysis is obviously in­
capable of estimating the influence of large inlet distortions 
on the compressor map. 

An ingenious technique for handling large distortions 
known as the "parallel compressor" model has been 
discussed by several authors [2], [4], [6], This approach is 
most suitable for the analysis of a square-wave cir­
cumferential distribution in which a portion of the com­
pressor annulus of extent 8L at the inlet guide vanes is sup­
plied with low total pressure gas at p^1L, and the remainder of 
the annulus, of extent (2ir — dL), is supplied with high total 
pressure gas a.tp02H as shown n Fig. 6. 
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If no crossflow occurs within the compressor, then the two 
portions of the compressor annulus act as two separate 
compressors in parallel, both discharging to the same exit 
static pressure. 

The undistorted compressor map, usually plotted as/703/p02 

versus m\IT02/p02, may be replotted as p-$/p02 versus 
(tn/A2)(\ff02/p02) where A2 is the inlet cross-section flow 
area as shown in Fig. 7, if the annulus area is known. p3/p03 
may be found from the exit Mach number. 

Then if the sector &L operates at the point L on Fig. 7(b), 
the sector (27r - 6L) operates at the point H, where 

\nm / H \nmr / 
Po2L 

Po2L / Po2H ' 

The total mass flow rate is equal torn = mL + mf 

_ /Wr02 \ eLAT /Po2L \ 
^APO2 >L 2* \ ^ r ) 

+ (^)„^^fe_) (24) 
v Ap02 >n 2T \jf- ) 

The mass averaged exit total pressure pm can be calculated 
from the exit static pressurep} and the total mass flow rate. 

Thus, for each operating point of the sector 6L, there is a 
corresponding operating point for the sector (2ir —BL), a 
corresponding total mass flow, total pressure ratio, and 
average efficiency. The compressor is assumed to go into 
surge when the low total pressure region crosses the surge line. 

This method has proved useful for analyzing distortions 

90° 180° 270° 360° 

Fig. 10 Behavior of square wave distortion In a three-stags com­
pressor 

5 
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Fig.11 

greater than 60 deg in width, and Fig. 8 shows a typical 
compressor map with and without a 60 deg distortion, 
together with the surge line prediction given by the parallel 
compressor model [4]. 

Neglect of unsteady effects in the simple "parallel com­
pressor" model makes it prone to serious errors for distor­
tions of amplitude less than 60 deg. 

The "parallel compressor" theory can also be used for the 
analysis of inlet temperature distortion, in which case the two 
portions of the annulus are operating on different corrected 
speed lines as shown in Fig. 9. 

Actuator Disk Analyses 

The assumption that the local performance of a stage 
depends only on the local flow coefficient is obviously a very 
sweeping one which must break down when velocity and 
pressure gradients in the 6 direction are large. A rigorous 
analysis of inlet distortion must include the effects of the 
distortion on the local performance of the blade rows. 

Starting with the work of Ehrich [7], a number of authors 
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Table 1 (reference [4]) Description of spoilers included in research program 
(Note: Spoiler nos. correspond to point nos. on Fig. 11.) 

Spoiler No. 

1 
2 
3 

4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 

Description 

1 x 90 deg 
1 x 45 deg 
1 x 22 Vi deg 

1 x 11 Wdeg 
2 x 45 deg 
4 x 22 Vi deg 
2 x 22 Vi deg 
1 x 90 deg 
1 x 90 deg 

360 deg tip 

360 deg hub 
1 X 180 deg 
1 x 270 deg 
1 x 315 deg 

180 deg hub 
+ 180 deg tip 

360 deg 

ML. at 
P02H 

100% speed 

0.942 
0.931 

— 

-
0.926 
0.977 

-
0.877 
0.967 

— 

0.952 
0.927 
0.923 
0.925 
0.934 

1.0 

— 60 deg 
9i 

0.402 
0.387 

— 

-
0.281 
0.036 

-
0.860 
0.178 

— 

0 
0.287 
0.146 
0.059 
0.185 

0 

Remarks 

test curtailed by 
failure 
not tested 

not tested 

test curtailed by high 
stage 1 rotor stresses 

covered whole annulus 

_l 
a. 
2 < 

3 
0_ 

O 5 

0.4 

0.3 

O.Z 

1 
A EXR, 60 DEG DIST. 

O EXR, 180 

oSs 

( 

DEG DIST. 

A^r~-». 

f. , 

( 

60 DEG. DIST. 

120 DEG. DIST. 

I 

10 20 30 

PULSE DURATION, At.ms 

Fig. 12 

have presented analyses of distortion which use the actuator 
disk approach to carry out a blade row by blade row 
calculation [8-11]. These studies give overall attenuation 
predictions which are similar to the zero crossflow analyses 
when the distance between blade rows is small. However, the 
shape of the distortion can be substantially modified by even 
small crossflows, an effect which is not predicted by the zero 
crossflow models. 

Fig. 10 shows how a square wave distortion changes shape 
as it passes through a compressor [3]. 

Combined Circumferential-Radial Distortion 

As has already been mentioned, little progress has been 
made in analyzing combined radial and circumferential 
distortion. Callahan and Stenning [12] studied flow 
redistribution upstream of a low hub-tip ratio fan with 
combined distortion using a very simple model of compressor 
behavior. Reid [4] suggests that radial distortion has a small 
effect on the surge line although it may have a strong in­
fluence on efficiency and flow. However, other researchers do 
not accept this view and maintain that radial distortion has a 
large effect on the surge line. He proposes that a distortion 
index Ap0/p02 should be used based on the average inlet total 
pressure p02 and the difference Ap0 between p02 and the low­
est area averaged total pressure in any 60 deg sector of the 
annulus. Parallel compressor theory is then applied using the 
appropriate value of Ap0/p02. Figure 11 shows the loss in 
surge pressure ratio predicted and measured using this 

technique for a variety of different types of distortion listed in 
Table 1. 

Unsteady Flow Effects 

When a rotor blade enters or leaves a flow distortion, it 
undergoes rapid changes in inlet angle of attack and relative 
velocity. The neglect of the resulting changes in total and 
static pressure and flow angle leaving the rotor is the major 
deficiency of all of the methods of analysis described 
previously. The use of even approximate techniques for 
calculating unsteady cascade behavior [13] gives a substantial 
improvement in the agreement between predicted and 
measured distortion attenuation and performance map 
modification. 

Transient Distortions 
The flow downstream of a supersonic inlet is highly un­

steady. In consequence, even though the mean flow pattern is 
uniform, the instantaneous total pressure distribution may be 
highly distorted. It has been found that over a period of time, 
a short-lived distortion may appear which is of sufficient 
magnitude, and sufficient duration, to cause the compressor 
to surge. Recent investigations have been directed towards 
defining the critical parameters which govern this 
phenomenon [14-16]. Typical results from [16] are shown in 
Fig. 12. 
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Rotating Stall and Surge 
Safe off-design operation of compressors is limited to the region in which the flow is 
stable. Flow instabilities can be of two types, rotating stall and surge. The first of 
these subjects the blading to high oscillating stresses while the second may also have 
a disastrous effect on the whole system of which the compressor is a component. In 
this paper, the properties of these two types of instability are discussed and some 
simple criteria for determining system stability are presented. 

Flow Stability 
In normal operation of a compressor without inlet 

distortion, the flow is essentially steady and axisymmetric, 
apart from the blade-to-blade pressure variations and the 
small scale unsteadiness associated with the moving pressure 
and velocity fields of the rotors. However, if the performance 
map of a compressor is plotted in the usual form shown in 
Fig. 1, as pressure ratio versus mass flow rate for different 
rotational speeds, a line called the stall line can be defined 
which separates stable operation from unstable operation. To 
the left of the line, the flow is no longer steady. Large 
oscillations of the mass flow rate may occur (called surge), or 
self-induced circumferential flow distortions may rotate 
around the annulus (called rotating stall), or a combination of 
both phenomena may appear (Fig. 2). Alternatively, after a 
few oscillations, the compressor may converge on a new 
steady state with very small pressure rise and mass flow rate. 
In this condition flow recirculation and the interaction with 
the rest of the system may produce a rapid temperature rise of 
the gas within the compressor, in extreme cases causing blades 
to melt within a few seconds or minutes of the occurrence of 
instability. 

Rotating stall induces large vibratory stresses in the blading 
of compressors and is therefore undesirable for structural 
reasons although the compressor may continue to give ac­
ceptable performance. Rotating stall occurs in compressible 
as well as incompressible flows. Surge is usually intolerable 
from the point of view of system operation. No matter which 
type of instability appears when the stall line is crossed, it is 
clear that the stall line represents a limit to the safe operation 
of the machine under most circumstances and is therefore to 
be avoided. Surge only occurs in compressible flows, i.e. 
gaseous fluids. 

In the development of a new compressor, the position of the 
stall line is a matter of great concern to the designer, and 
considerable effort is frequently devoted to moving the stall 
line away from the region of maximum efficiency. 

Rotating Stall 

When rotating stall occurs, one or more "stall cells" travel 
around the compressor annulus in the direction of rotation of 
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centrifugal compressors for the Whittle turbojet in 1938 [1]. A 
comprehensive list of publications on rotating stall up to 1967 
has been assembled by Fabri [2], and a series of ASME papers 
extending from 1954 to 1972 cover many of the significant 
developments in the field [3-7]. In the following sections, 
attention will be devoted to the development of criteria for the 
prediction of the onset of rotating stall, to the propagation 
velocity, and to the number of stall cells. 

the compressor, with a rotational speed which is usually close 
to one-half of the compressor rotational speed, although in a 
few rare cases stationary stall cells have been observed at­
tached to inlet struts. Rotating stall can occur in both axial 
and centrifugal compressors. Within each stall cell the blades 
are so severely stalled that there is virtually no flow through 
the blade row. A stall cell may cover only a few blades, or may 
occupy a substantial portion of the annulus. It may appear at 
the root or tip of the blading or may extend over the whole 
blade length. 

The simplest method of explaining the onset of rotating 
stall is illustrated in Fig. 3. Consider a row of axial com­
pressor blades operating at a high angle of attack as shown in 
Fig. 3(a). If a flow disturbance produces a local increase in 
angle of attack on blade B as shown in Fig. 3(b), then severe 
flow separation may occur. The resulting blockage of the 
channel will divert flow away from blade B, increasing the 
angle of attack on blade A and reducing the angle of attack on 
blade C. The stall will therefore propagate from right to left 
and, if conditions are suitable, may build up into a fully 
developed stall cell as shown in Fig. 4, propagating along the 
cascade with velocity Vp. 

Rotating stall was first observed by the group developing 

Small Perturbation Analysis. A large number of analyses of 
rotating stall have been made in which the response of the 
flow entering a cascade to a small unsteady circumferentially 
varying disturbance is studied. The objectives of all of these 
analyses are to determine a criterion for the onset of rotating 
stall, the velocity of propagation, and (if possible) the number 
of stall cells. The first of these objectives has largely been 
attained, but small-perturbation analyses have shown only 
limited success in predicting the propagation speed or the 
number of stall cells. The following discussion describes the 
very simplest type of small-perturbation incompressible 
theory but does yield a criterion for the onset of rotating stall 
in a cascade which appears to be applicable to single-stage 
compressors and some multi-stage compressors. 

Figure 5 shows an infinite two-dimensional rectilinear 
cascade lying on the y axis in the xy plane. At the leading edge 
of the cascade let x = 0. At station (T), x = -oo . Under 
steady, uniform upstream flow conditions 

wy = wy 

where wx, wy are the velocity components relative to the 

• Nomenclature-

A 
b 

C 

C" = 

D = 
E = 
F = 

F' = 

Sc = 
k = 

coefficient in Fourier ex­
pansion 
flow area 
coefficient in Fourier ex­
pansion 
absolute velocity 
pressure coefficient 
P2 ~ Poi 
d(p2 - Poi) 

dm 
coefficient 
coefficient 
Pi ~ Poi 
d(Pj -Poi) 

dm 
coefficient in Newton's law 
polytropic exponent 

L = duct length 
m = mass flow rate 
n — number of harmonic 

N = rotational speed 
p = pressure 

p0 = total pressure 
Ap = pressure rise 
R = gas constant 
/ = time 
T = temperature 
u = axial velocity perturbation 
U = blade speed 
v = tangential velocity perturbation 
V = plenum volume 

Vp = stall cell propagation speed 
w = relative velocity 
x = axial coordinate 
y = tangential coordinate 
z = variable 

/3 = 
8 = 
</> = 
$ = 
P = 

i> = 

ts = 

flow angle relative to cascade 
perturbation 
perturbation velocity potential 
total velocity potential 
density 

total pressure rise coefficient 

P<n ~ P02 

pU2 

total-to-static coefficient 

P3 -P02 
pU1 

Subscripts 
1 = 
2 = 
3 = 

Far upstream of blading 
Inlet of blading 
Outlet of blading 
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cascade. Let the static pressure rise across the cascade be of 
the form 

Pi ~ Pi 

where 

1 2 

tanj32 = 

= g(tan/32) 

yyi 

(1) 

(2) 

as shown in Fig. 6. 
Consider the possibility of small unsteady disturbances in 

the flow such that upstream of the cascade 

wx = wx + u(x,y,t) 

wy = wy + v(x,y,t) 

p = p+bp(x,y,t) 

(3) 
(4) 
(5) 

where u,v < < wx,wy 

1 
and dp < < 1 pwx

2. u, v — 0 for x — - oo. 

Since the flow far upstream of the cascade is irrotational, the 
upstream flow field is free of vorticity and we may define a 
potential function * such that 

* = wrx+wvy +4> (6) 

where 

Hence 

From continuity, 

Hence 

wxx+wyy + <$> 

a * a * 
x dx y dy 

d<j) d<t> 
u = — and v = — 

dx dy 
du dv 

dx + dy = ° 

d2<j> d2(j> _ 

Jx1+ V ~° 
Solutions to (8) may be found in the form ' 

\~» T mty , , s . ntryl "^_ 

4>= L Lfl«W cos ~y +*>>•(*) sin -y ]e b 

(7) 

(8) 

(9) 

representing wave-like disturbances in the flow. At x = — oo, 
u and v = 0, wxi = wx wv. The unsteady Bernoulli 
equation upstream of the cascade may be written (5) 

dd> w2 p w2 p, 

at 2 p 2 p 
(10) 

Hence, 

1 — dc 

where 

wj = [wx + u2]
2 + [wy + v2]

2 

(13) 

(14) 

After some rearrangement, neglecting terms in w2, v2, it is 
found that if p2 = Pi + &Pi andp 3 = p3 + 8p3 then 

1 _ dc 
5pi-6p2=pcp[wxu2 + wyv2]+-pw2

2-j^-8(.tim(32) (15) 

where 5(tan/32) = 5 ( ^ 2 - ) 
V w^ / 

wxv2-wyu2 

wx
2 (16) 

For an isolated cascade in rotating stall, experiments [8] 
indicate that the fluctuations in pressure downstream of the 
cascade are much smaller than the fluctuations in pressure 
upstream, i.e., 5p3 < < 8p2. Setting 6p3 = 0 and substituting 
equation 15 in equation 12 we obtain the following equation 
which must be satisfied by the perturbation potential. 

where D 

and 

[(!-*„)' wr + 

[o- C„)Wy 

+E\I) =0 
: / 2 \ dy / 2 

wy dcp "1 
2cos2/32 dtan/32J 

w 7 c?cp "I 
2cos2/32 dtan)32J 

(17) 

(18) 

(19) 

Substituting equation (9) in equation (17) a pair of linear 
simultaneous differential equations are obtained for an(t), 
bn(t). 

(20) 

(21) 

Hence, at 

Solutions to these equations show that when D < 0, 
disturbances die away but when D > 0 they grow and 
propagate along the cascade. The condition for inception of 
rotating stall is D = 0, for which 

>ar /2 2 p 2 p 
rfCp _ 2(1 - cp)cos2|82 

rftan;32 tan/32 
(22) 

which yields 

(F!) 
— — bp2 

+ WXU2+W V2+ : 
2 ' p 

i.e., 

( ID 

- + w , ( — 1 +w„l -— I H = 0 (12) 
\dt/i x\dx/i y\dy/i p 

If the unsteady cascade behavior is the same as the steady 
cascade behavior, then the pressure rise across the cascade in 
unsteady flow can be found, for small perturbations, from the 
expression 

Pi -Pi 
- fcp' 

~Cp atanft 
-5(tan/32) 

pw\ 

The velocity of propagation is found to be 

wy(l-cp) 

" sin2/32 

(23) 

All wavelengths become unstable simultaneously. From (22) it 
can be seen that rotating stall cannot occur until dcp/dtanP2 is 
negative, that is until an increase in B2 produces a decrease in 
cp. The cascade must be severely stalled for this condition to 
be satisfied (as shown in Fig. 5). 

For isolated cascades, equation (22) appears to give a 
reasonably good prediction of the onset of rotating stall. 
However, the measured stall propagation velocities are not in 
good agreement with equation (23). As has been shown by 
Takata and Nagano [7], fully developed rotating stall is a 
highly nonlinear phenomenon and there is, in fact, no reason 
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to expect that a small perturbation theory will be successful in 
predicting Vp after the stall cells have grown to their limiting 
size. 

An especially interesting application of simple stall 
propagation theory is the case of an isolated rotor illustrated 
in Fig. 7. 

If the flow approaches the rotor with no swirl, then cy2 = 0 
and 

yfyl = U Wy=CX 

W1 = C? + V2 

The pressure rise across the rotor in steady flow is given by 

Ap =Pi -Pi =c„-pw\ =cp-p\cx\ + U2] 

%-W-+<n%+~. 

(24) 

1 dcp e?tan/32 
= -OWn — ^z ; l-pCxC„ 

2 p 2 eftan/32 dcx
 x " 

Hence 

<ftan/32 

dcx 

dAp 

dcr 

U U 
5- since tan/32 = — 

cx ~ c 

pU dc 

2cos2|82 eftan/32 

When rotating stall starts, 

+ pcxc 

dc„ 

dta.n(32 

2(l -c p )cos 2 fe 

tan/32 

(25) 

(26) 

(27) 

(22) 

+ .2 

* , ^s 

.4 .6 .8 
Cx/U 

Fig. 9 Experimental compressor characteristics 

Substituting equation (22) in equation (27) we find that 
when rotating stall begins 

dAp _ 
dcx 

1 dAp 
pcx dcx 

pcx 

= 1 (28) 

This is exactly the condition at which the onset of a self-
induced flow distortion was predicted by equation (10) of 
reference [2]. 

It therefore appears that the existence of an infinite am­
plification ratio for inlet flow distortion can be associated 
with the inception of rotating stall. 
Moreover,p} -p2=(Pi -Poi)+Poi -Pi) 

1 , 
Ap = (p3-Poi)+ ^pcx 

Hence 

When 

dAp 

dCy 

d(pi -P02) 

dAp 

dc. 

dcr 

= pcx, 

+ pcx 
(29) 

d(Pi -p02) 

dcx 

then 

= 0 (30) 

Thus, if the rotor pressure rise characteristic is plotted in the 
form (p3 -pfo) versus cx, then rotating stall occurs at the peak 
of the curve shown in Fig. 8. This important result was first 
obtained by Dunham [9]. 

As a criterion for the inception of rotating stall, equation 
(30) appears to be useful not only for isolated rotors but also 
for single-stage compressors and some multistage com­
pressors, and it has been discussed by Moritz [10]. When a 
multistage high pressure ratio compressor operates at low 
speed, rotating stall may be initiated by severe local stalling of 
the front stages and equation (30) does not apply. 

In Fig. 9, the observed point of rotating stall inception is 
shown on the characteristic of a single stage compressor tested 
by Dunham [9]. Rotating stall started at the peak of the 
stagnation-to-static pressure rise coefficient \ps defined as 
(Pw-PiVpU2- Similar good agreement has been found in 
many other machines. 

Other authors have found that applying the above criteria 
to each streamtube at each blade, localized rotary stall can be 
predicted in multistage compressors. Surge usually follows 
according to [13 and 14]. 

Several attempts have been made to predict the number of 
stall cells using small perturbation stability analyses. None 
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has met with success and it appears that nonlinear phenomena 
are intimately involved in the process which determines the 
number of cells, as well as boundary layer delay times and 
fluid inertia in the cascade. 

Nonlinear Analyses of Rotating Stall. When the stall cell 
reaches its limiting size, the axial velocity within the cell is 
almost zero. This fact has been used [5, 8] to derive a simple 
expression for the propagation speed of the cell along the 
cascade. 

V =w [>4 (l-c,,)-
3 2 • sin2/32 

(31) 

which gives better agreement with measured propagation 
speeds than equation (23). 

Takata and Nagano [7] have recently undertaken an ex­
tremely thorough numerical solution of the nonlinear un­
steady equations of motion for rotating stall which has been 
successful in reproducing most of the observed phenomena, 
and which has indicated that the number of stall cells in a 
complete stage is governed by the interference effects between 
blade rows. They have not, however, been able to explain why 
different numbers of stall cells appear at different operating 
conditions in an isolated rotor. 

Surge 

Surge consists of large-amplitude oscillations of the flow 
through the entire compressor which also produces large 
oscillations in compressor delivery pressure [4, 11]. 

The conditions which induce surge, and an estimate of the 
surge frequency, may be obtained from a small perturbation 
stability analysis of the whole system. 

Small Perturbation Analysis of Surge. The essential 
ingredients of any surge analysis are 

(a) a compressor 
(b) mass storage 
(c) fluid inertia 
(d) a throttle 

In any real system, the mass storage and the inertia are 
distributed throughout the system. However, the essential 
elements of the surge phenomenon can be extracted from the 
simple lumped parameter model pictured in Fig. 10. The 
system is lumped into four components, consisting of the 
compressor, a duct, a plenum and a valve. The compressor is 

STEADY 
OPERATING 
POINT 

*•- m, 

STEADY STATE 
OPERATING POINT 

Fig. 13 

assumed to have a pressure rise characteristic as represented in 
Fig. 11, with p2-Pot some function of the mass flow rate 
through the compressor m2. 

P2-Poi=C(m2) (32) 

The gas leaving the compressor enters a duct of length L 
and constant flow area A and discharges into a plenum of 
volume V, which it leaves through a valve. Under steady flow 
conditions, m2 

frictional effects in the duct. 
Consider small fluctuations about a mean flow such that 

m3 = rh and p2 = p3 = p if we neglect 

m2 = m + hm2 

w3 = m + 5/773 

p2 = p + dp2 

p3 = p + 5p3 

(33) 
(34) 
(35) 
(36) 

Neglecting axial density changes in the duct, the momentum 
equation within the duct is 

L dm2 
Pi -Pi = Agc dt 

i.e., 
L d 

(p + 8p2)-(p + 5pi)= — —(m + bm2) 
Agc dt 

8p2 - 5p} = 
L ddm-, 

Agc dt 

Mass conservation in the plenum requires 

m-,-mf = V-
dt 

If the process in the plenum is polytropic, then 

k dp} 1 dp3 

P3 dt p3 dt 

where k is the polytropic exponent. 

Vp3 dp3 

(37) 

(38) 

(39) 

(40) 

Hence, m2-mi = 
kPi dt 

18/Vol. 102, March 1980 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.103. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



LIMIT CYCLE 

- • 

{m + 8m2)-(m + 8mi)--
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-(p + 8p3) 
kRT, dt 

8m2 -8m3 
V d 

kRT, dt « P J ) (41) 

If we linearize the compressor characteristic in the vicinity 
of the steady state operating point then 

Pi-Po\ =C=C+ 

(p + 8p2)-pol=C+ 

dC 

dm 2 
dC 

dm 2 

8m 2 

8m i 

(42) 

But P~Po\=C 

Therefore 8p2 = 
dC 

where 

dm 2 

8p2 = C'8m2 

dC 

8m, 

(43) 

C' = 
dm 7 

Let the pressure drop from the plenum to the atmosphere be 
a function of the mass flow through the valve as shown in Fig. 
12. 

P3-Poi=F(m3) 

Then for small disturbances away from the steady state 

dF 
Pi-Po\=F+-

where 

dm3 

- dF 
{p + 8p3)-pm=F+^ 

Spi = ~—8m3 
dm3 

8p3 =F'8mi 

dF 

8m 3 

8m-, 

(44) 

(45) 

(46) 

F' 
dm, 

The linearized equations for surge are therefore 

8p2-8p3 = ^ 8 m 2 

V d8p3 
8m2 - 8m, = —-— — 2 3 kRT3 dt 

8p2 = C'8m2 

8p3 =F'8m3 

(38) 

(41) 

(43) 

(46) 

C,F 

A DYNAMICALLY UNSTABLE 
B STATICALLY UNSTABLE 
D STABLE 

m 

Fig. 15 

Eliminating any three of the variables from these four 
equations, we find the following characteristic equation for 
the remaining variable z where z can be 8p2, 8p3 ,8m2 or 8m3. 

LF'V d2z f L 

AgckRT3 ~dtI + \Ag~c 

C'F' V \dz 

dt kRT, 
+ ( / ? ' -C ' )z = 0(47) 

This is a second order equation which has constant coef­
ficients if the disturbances are small. The coefficient of 
d1z/dt2 is always positive because, for any real valve, F' is 
always positive. Hence, instabilities occur if the coefficient of 
dz/dt becomes negative (negative damping) or the coefficient 
of z becomes negative (negative spring rate). If the coefficient 
of dz/dt becomes negative, the system is dynamically unstable 
and will undergo oscillations of increasing amplitude (surge). 
If the coefficient of z is negative, the system is statically 
unstable. 

The steady state operating point of the system is defined by 
the intersection of the Fand C characteristics as shown in Fig. 
13. 

If the valve area is gradually reduced the steady state 
operating point moves to the left on the compressor 
characteristic. F' > C for all the operating points shown in 
the figure so that the coefficient of z is always positive. C" is 
initially negative. However, as soon as the peak of the 
compressor characteristic is passed, C" ( = dC/dm) becomes 
positive. The system damping becomes zero when 

C 'F'V 

or C" 

kRT3 Agc 

LkRT3 

gcAF' V 
(48) 

and surge oscillations then begin. For any real system, this 
will occur very close to the peak of the curve, and long before 
the system becomes statically unstable. According to equation 
(30), rotating stall should start at the peak of the curve, just 
before the initiation of surge. However, the inaccuracy of 
equation (30) as a rotating stall criterion for multistage 
compressors makes it possible for surge to occur before the 
inception of rotating stall, or for both to appear 
simultaneously. High speed dynamic measurements of surge 
initiation in high pressure ratio compressors have indicated 
that surge may be triggered very rapidly by rotating stall, and 
that the slight dip in the compressor characteristic produced 
by the rotating stall may be sufficient to induce surge. In low 
pressure ratio machines, the stall line may be indicative of 
rotating stall alone, without surge, and it may be necessary to 
penetrate deeply into the rotating stall region before surge 
occurs, or in some cases the machine may not surge at all. 

The radian frequency of the oscillations for small disturb­
ances is given by 
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(F'-C')AgckRT3 

LF'V 

or, since C" is nearly zero at surge 

Agc kRT3 

LV 

< < 0 and only a partial rotating stall will occur. Only when 
(49) half of the upper streamtubes are in rotating stall, then surge 

will occur. 
These rules, verified in this paper, are significant when 

designing high efficiency compressors, while maintaining 
adequate surge margin. 

(50) References 

The surge oscillations may build up into large amplitude 
limit cycles illustrated in Fig. 14, or in some cases the system 
may find a new steady state operating condition. 

In Fig. 15, a combination of valve and compressor 
characteristics is shown with three intersections. Point A, the 
point of surge initiation, is dynamically unstable. Point B is 
statically unstable because F' B < C" B. However, point D is 
stable and, depending on the way in which surge is entered 
and the parameters of the system, it may be possible for the 
machine either to surge continuously or, after a few cycles, to 
converge on D. In the latter event, severe compressor damage 
may be sustained due to excessive temperatures or to rotating 
stall if D is in the region where rotating stall occurs. 

Summary (by editor) 

This paper has brought together the phenomena of rotating 
stall and surge. It has been the experience of the editor that the 
ideas expressed here are completely borne out by successfully 
corrolating experimental and calculated surge conditions. 

Dividing a multistage compressor into a number of 
streamtubes (5 to 9) and calculating rotating stall criteria for 
each tube and blade row, one finds that surge will occur when 
the streamtube close to the hub is unstable for rotating stall. 
At the hub where the outlet angle is nearly axial G82 = 0), one 
finds C ~ 0. However surge will not occur when the shroud 
streamtube is unstable. Since at the shroud (/3 ~ 45 deg) C" 
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An Omnidirectional Wall Shear 
Meter 

An omnidirectional wall shear meter has been developed which is capable of the 
direct measurement of both magnitude and direction of wall shear stress. Linearity, 
resolution, and accuracy have been demonstrated analytically and experimentally 
by static and dynamic calibration. The floating element device works on the can-
tilevered beam principle. Eddy current probes, set at right angles to the beam and to 
each other, sense the magnitude and direction of deflection which can be calibrated 
against known force loadings. The device is used to measure wall shear stress in 
three-dimensional flows, and was specifically developed as a means of validating 
proposed three-dimensional near-wall similarity laws. 

Introduction 
In 1954 Clauser [1] made a significant contribution to the 

study of two-dimensional turbulent boundary layers by 
showing that wall shear stress can be inferred from the near-
wall velocity field using the two-dimensional near-wall 
similarity law, 

u+ = - ln^+ +C, 
K (1) 

commonly known as the "law of the wall." Derivable from 
first principles, the law of the wall has been repeatably 
verified by comparison with direct measurements of wall 
shear stress [2-16]. Although some question as to the exact 
values of K and C remain [17], the wide applicability of this 
simple expression is quite remarkable. 

Verification of the two-dimensional near-wall similarity 
law experimentally can only be accomplished by "direct" wall 
shear stress measurements, viz., measurements with floating 
element devices. In essence, a small area of the wall is isolated 
and the force acting on the area is measured. Note in par­
ticular that the existence of a near-wall similarity law is a 
prerequisite for use of "indirect" measurement techniques 
such as heated elements, Preston tubes, and the like. Given 
the validity of a near-wall similarity law, indirect techniques 
derive their usefullness from their simplicity compared with 
the floating element technique where extreme care is required 
to avoid the numerous potential error sources [3, 6, 11, 
18-20]. 

Unlike the two-dimensional case, no three-dimensional 
near-wall similarity law can be formulated from first prin-

Contributed by the Fluids Engineering Division and presented at the Winter 
Annual Meeting, New York, N.Y., December 3-7, 1979, of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by the Fluids 
Engineering Division, February 12,1979. Paper No. 79-WA/FE-22. 

ciples. Although several three-dimensional near-wall 
similarity laws have been postulated [21-28] none have been 
experimentally verified by direct measurements. Additional 
complexities are added for the three-dimensional case because 
the velocity profile is not collateral and the wall shear 
direction cannot be determined a priori. The only direct 
measurements of wall shear stress in a three-dimensional flow 
reported to date are five data by Pierce and Krommenhoek 
[18] using a one-dimensional device, where the wall shear 
direction was inferrred using the heated element technique. 

A floating element device capable of simultaneous 
measurement of wall shear stress magnitude and direction is 
needed to provide a means of testing the validity of any three-
dimensional near-wall similarity law [28-30], In turn, a valid 
three-dimensional near-wall similarity model might provide a 
means of determining wall shear stress, an often important 
component of drag, from near-wall velocity data, and would 
aid in the development of more precise and efficient closure 
methods of analytical modeling of three-dimensional tur­
bulent flows. An omnidirectional floating element device has 
been developed and used successfully for three-dimensional 
turbulent flow studies [31]. 

Description of Apparatus 
A schematic of the omnidirectional floating element device 

is shown in Fig. 1. A 2.86 cm circular disk is supported by a 
1.59 mm diameter steel rod, 21.6 cm in length. The disk is 
separated from the surrounding wall by a 0.127 mm gap. 
Vertical misalignment of the disk can be limited to less than 
0.025 mm. As air moves over the wall, the disk is allowed to 
move as the local wall shear and secondary forces dictate. A 
viscous damper filled with 10,000 cs oil is provided to limit 
oscillations of the disk. The entire device is sealed with respect 
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Fig. 1 Omnidirectional wall shear stress measurement device 
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Fig. 2 Displacement calibration for eddy current proximity probes 

to the environment to minimize flow through the gap between 
the disk and adjacent meter surface. 

Two eddy current devices, labeled channels A and B, sense 
displacement of a 2.0 cm steel cube supported by the rod. 
These sensors are located at right angles and produce d-c 
voltage outputs whose resolution indicates both the 
magnitude and direction of the wall shear stress. 

Characteristics of Operation 
The floating element mechanism was modeled analytically 

using the Line Solution Developer (LSD) [32]. This computer 
program is based on line-solution technology (transfer 
matrices or initial parameter theory) that allows for an ac­
curate static solution for the deformation of elastic solids. 
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Fig. 4 Floating element sensitivities 

The complex coupling of shear and normal forces as well as 
bending moments can be modeled. Results indicate that the 
floating element mechanism should behave linearly over 
displacements substantially greater than designed in the 
meter. Eccentric moments due to weight imbalances in the 
target or disk, preexisting bends in the supporting rod, and 

-Nomenclature -

C, K = constants 
Reunit = unit Reynolds number at tunnel entrance, U/v 

u = local velocity 
u+ = u/y/rw/p 

U = free-stream velocity 

y = distance from the wall 
+ = y-frjp lv 
p = density 

r„ = wall shear stress 
v = kinematic viscosity 
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Fig. 5 Calculated uncertainty in wall shear magnitude measurements 
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Fig. 6 Calculated uncertainty in wall shear vector angle 
measurements (estimated at 15:1) 

the nulling method used in static calibration have no effect on 
the linearity or sensitivity of the mechanism. 

Bently Nevada model 2388-3000 series eddy current 
proximitors and model 300 probes were chosen as 
displacement sensors. For this study, the drift characteristics 
were measured at constant temperatures to be 0.028 /mi/5 min 
and 0.070 ftm/5 min for channels A and B, respectively. This 
drift represents a change in the sensed load of less than 0.03 
and 0.08 dynes/5 min for channels A and B, respectively. 

Fig. 2 shows the effect of displacement on proximitor 
output. A steel target was displaced from each 
proximitor in 0.0254 mm increments using a precision 
micrometer. The proximitors are operated in the linear 5 to 8 
volt range when installed. 

Calibration-Static 
The static calibration technique requires that small masses 

of predetermined weight be placed in a pan suspended by a 
thread connected through a pulley to a small post extending 
from the center of the floating element. Two vibrators are 
used on the pulley and calibration stand in order to minimize 
dry friction. The additional weight of the pan and thread is 
negated before the masses are added by adjusting the 
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Fig. 7 Comparison of omnidirectional wall shear meter with LVDT 
Meter [35] 

calibration stand level in order to recenter or rezero the 
floating element. By plotting the proximitor outputs versus 
the loading, calibration curves are obtained. 

Fig. 3 shows a typical calibration curve. Using a least 
squares fit, the coefficient of determination (33), r2, was 
calculated to be 0.9999. The values of r2 may range from 0.0 
to 1.0 and indicates how closely the linear relation fits the 
experimental data. The closer r2 is to 1.0, the better the fit. 

In Fig. 4, the sensitivity calculated for each calibration 
point is plotted verus load. Fig. 4 reveals that: 1) considerable 
more scatter in the data occurs for small loadings than larger 
loadings, 2) that the sensitivities for channels A and B are 
approximately the same at 6.469 mV/dyne, and 3) all data, 
except for loadings below 10 dynes, fall within a ±2 percent 
error band while data above 25 dynes fall within a ± 1 percent 
error band. The increased scatter and uncertainty in the 
calibration sensitivities determined from the lighter loads are 
to be expected since dry friction and other secondary forces 
become large when compared with the load. For repeated 
calibration curves before and after use of the meter, 
proximitor sensitivities remain within one percent. 

A Kline-McClintock [34] uncertainty analysis of wall shear 
stress magnitude and direction was completed. The un­
certainties in signal conditioning, element area, relative probe 
alignment, and static calibration were considered in 
evaluating overall uncertainty in wall shear meaurements with 
the omnidirectional meter. If the wall shear vector, whose 
magnitude is assumed to be 0.85 Pa, is allowed to rotate 180 
deg relative to the tunnel center line, the uncertainty in the 
magnitude and direction of wall shear stress can be plotted 
versus the angle of rotation, as shown in Figs. 5 and 6. The 
nonuniformity shown in Fig. 6 occurs when the shear force is 
aligned in the direction of either channel A or B. A 0.015 
percent uncertainty due to drift and a fixed uncertainty of two 
percent due to disk misalignment with the meter housing are 
included with the Kline-McClintock results in Fig. 5. In Fig. 6 
a 0.2 deg uncertainty due to drift and fixed uncertainties of 
one deg resulting from misalignment of the omnidirectional 
meter with the tunnel center line and one deg from disk 
misalignment with the meter housing are included with the 
Kline-McClintock results. Uncertainties associated with 
pressure gradients are currently being investigated. 
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Fig. 8 Two-dimensional similarity plots (with uncertainty estimates at 
20:1) 

Calibration-Dynamic 
At least for small to moderate pressure gradient flows, the 

ability of a device to measure the magnitude and direction of 
wall shear stress in three-dimensional flows may be tested in a 
two dimensional flow. In this case the shear meter is aligned 
so that each channel measures an approximately equal 
component of the local wall shear stress with both mangitude 
and direction of the wall shear stress calculated from the 
response of the two separate channels. This is the same 
procedure that is used in a three-dimensional case with the 
exception that in such a case with the approximate wall shear 
stress direction not known a priori, the force components on 
each channel would likely be different in magnitude. Thus, 
the resolution of both the wall shear stress magnitude and 
direction in a two-dimensional flow is an effective test of the 
instrument's capability to perform in a three-dimensional 
flow. 

The omnidirectional floating element device was installed in 
a large-scale, low turbulence wind tunnel and subjected to a 
nominally two-dimensional flow. The device was carefully 
aligned so that each proximity probe was displaced 45 degrees 
from the tunnel center line. Wall shear stress and velocity 
profile measurements were obtained at various tunnel speeds. 
Seventeen wall shear measurements were taken. Since the flow 
was nominally two-dimensional, the wall shear angle should 
have been at 45 degrees to each proximitor. The maximum 
difference from 45 degrees was +0.5, -1.0 degrees with a 
mean average of -0.25 degrees and a standard deviation of 
0.55 degrees. The maximum difference among wall shear 
measurements at any given unit Reynolds number was 2.5 
percent, although the difference was typically less than one 
percent. 

Using the same wind tunnel, Rule [35] obtained direct 
measurements of wall shear stress using the floating element 
device developed by Pierce and Krommenhoek [18]. Their 
device allows for movement of the floating element in one 
direction only, and utilizes an LVDT for sensing 
displacement. Comparison with Rule's data for varying unit 
Reynolds number is shown in Fig. 7. McAllister completed his 
measurements approximately Wi years after Tennant and 
Rule. During this period, both floating element meters were 
disassembled, inspected, and realigned. Additionally, the 
method of proximitor output measurement was changed from 
VFC-counter combination to a more state-of-the-art, 5Vi 

digit, d-c voltmeter with a slight increase in accuracy in this 
measurement. The repeatability in Fig. 7 shows each meter's 
reliability to obtain data without any dependence on a par­
ticular operator. 

The law of the wall is well established for two-dimensional 
flows, and therefore provides a means of further verifying the 
omnidirectional wall shear meter measurements. Near-wall 
velocity data for a nominally two-dimensional, slightly 
negative pressure gradient (13.6 Pa/m) was carefully 
measured using a specially designed total pressure probe [35]. 
Two-dimensional similarity plots are shown in Fig. 8. The 
solid curves represent the two-dimensional similarity law in 
Spalding's third-order form [36] with NPL constants [37], 
Spalding's law simply combines the law of the wall, given by 
equation (1), with the governing expression for the viscous 
sublayer region, «+ = y+, through an assumed smooth 
transition. The X's represent the velocity data non-
dimensionlized by the measured values of wall shear stress. 
For measured wall shear values consistent with the law of the 
wall, the symbols and the solid curves coincide. Some of the 
velocity measurements between the logarithmic and wake 
regions were omitted to reduce data acquisition time. 

Utilizing the Kline-McClintock [34] analysis again, un­
certainties for the data shown in Fig. 8 can be determined. 
Considering the combined uncertainties in velocity probe 
location, manometer accuracy, drift, wall shear stress 
measurements, and the fixed uncertainties due to the circular 
disk's misalignment, uncertainty limits may be placed on each 
data point. Four such uncertainty bands are shown in Fig. 8. 
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Piston Vibration in Piston-Cylinder 
Systems 
The motion of a cylindrical piston falling in a liquid filled vertical cylinder is 
analyzed. It is found that concentric motion is impossible and that flow induced 
vibration is always associated with such piston-cylinder systems. If the clearance 
over radius ratio is larger than a certain critical value, @cr, severe wobble and piston-
cylinder contact occurs. For clearance over radius ratio less than (3cr stable 
periodical oscillation with a constant amplitude takes place and the piston never 
contacts the cylinder wall. Reasonable agreement is achieved between the 
theoretical results and previous experimental observation. 

Introduction 

Piston-cylinder systems are widely used in fluids 
engineering applications. Among these are spool valves, 
piston pumps, various actuators, capsule-pipeline tran­
sportation, viscometers and timing devices, and, of recent 
interest, the free piston in some versions of the Stirling engine. 

Piston-cylinder systems have been analyzed in the past 
mainly with respect to hydraulic lock [1, 2], or leakage losses 
past the piston [3]. However, in all these analyses the piston is 
considered stationary. Few works that deal with moving 
pistons indicate some sort of fluctuations which may lead to 
unstable motion. In [4] a moving piston having a constant 
axial velocity is analyzed based on the assumption of steady 
state conditions. However, it is claimed that contact between 
the piston and cylinder wall is repeatedly occurring. The 
possibility of unstable piston motion is pointed out in [5] and 
shown experimentally in [6]. 

Unstable motion of pistons is also reported in [7]. In this 
experimental work pistons of length over radius ratio L/r0* = 
2 were allowed to fall in a water filled vertical glass tube. It 
was found that cylindrical pistons can move within the tube 
stable or unstable depending on their clearance to radius ratio 
/3. When the ratio /3 is smaller than a critical value 0cr the 
piston moves downward smoothly, however, when /3 > /3cr 
wobble starts and the piston repeatedly hits the tube wall. 

In still another experimental work [8], a periodical change 
in surface finish appearance during the process of hydrostatic 
extrusion of aluminum bars is reported. This uneven bamboo-
type appearance of the surface could be the result of an un­
stable motion of the driving piston. 

All these observations call for a rigorous dynamic analysis 
of pistons motion in cylinders. Previous analyses of 
stationary pistons or incomplete dynamic analyses like [5] 
cannot provide solutions to the real nature of piston motion. 
In all these analyses the fluid forces and moments exerted on 
the piston are obtained from solutions of the Reynolds 
equation of hydrodynamic lubrication [9]. In these solutions 
the clearance ratio |8 is neglected being usually very small. 

Contributed by the Fluids Engineering Division for publication in the 
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Fig. 1 Piston in cylinder 

However, as was observed in [7] /3 is the main parameter 
affecting motion stability. Hence, it should be retained in any 
dynamic analysis of piston-cylinder system. 

The aim of this work is to present a dynamic analysis for 
the motion of a cylindrical piston falling freely in a liquid 
filled vertical cylinder. The critical parameter &„ will be 
found for various piston-cylinder-fluid combinations, and in 
the case of stable pistons the nature of their motion will be 
presented. The theoretical results will then be used to explain 
the experimental finding in [7]. 

The Modified Reynolds Equation 

Consider the piston in Fig. 1 with a length over radius ratio 
a = L/r^ , clearance ratio (3 = C//-0*, eccentricity e, and tilt 
angle relative to the tube axis T. The piston is falling in the 
fluid filled vertical cylinder with an axial velocity U and can 
oscillate in a plane containing the piston and cylinder axes. 
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The normalized Navier-Stokes equations for the flow around The continuity equation is in dimensionless form 
the piston are in polar coordinates 

r tox 1 dp d2ux 0 dux , !Ltru \+RdUo 4. ® r
dux n 

s"'-]=-£+4lH>H m\ur"~+m\= dy2 ' r dy 

dp d2ue 0 du„ [toe 1 , a dp d2ug (3due n , . 
e L dy J r dd dy1 r dy 

(3) 

S-m P . r ? p e r integrations of equations (2), using the no slip con-
" v > dition on the boundaries, give the components of the velocity 

vector u in the form 

, [ ln(l+/Jy) ] 3 dp \ ( y\ ( h\ ln(l+j3y) "I 

,T In(l+j8j0 ] 
" ^ " - L 1 " l n ( l + < M ) J 

u - u \ \ l n ( 1 + ^ 1 6a to \ u ln(l+/3y) ] 

(4) 

The dimensionless fluid velocity vector is u = /3u*/ V where V 
is a characteristic velocity. The dimensionless pressure is/? = 
p*/Ps where Ps is the axial driving force divided by the piston 
cross section area. Hence, 

Ps=L(pp~Pf)g 

The characteristic velocity Kis related to Ps by 

C3 

V= —P 

and the Reynolds number Re is 

Vr-
Re = Pf 

M 

Thus for typical clearances, C, Re < < 1. Applying the 
assumptions of lubrication theory [9], but retaining terms of 
order /3 in (1), we have 

d2u +P^x =6 to 
dy2 r dy dx 

d2ur | fla«, _ 0 

dy2 r dy 

d2ug 0 di^ = 6 a dp 

dy2 r dy r dd 

(2) 

In equation (4) u ' is the dimensionless velocity vector of an 
arbitrary point (x, 6) on the piston surface. Using a dimen­
sionless axial velocity of the piston in the form X = U/ V, a 
dimensionless eccentricity e = e/C, and a dimensionless tilt 
y = FL/2C, and noting that the tilt angle T is very small, the 
components of u ' are 

u' = /3(X + -r €7 r cos0) 
\ or cr ' 

u'r = — [-2/3X7+ ^ (e + 27x)lcos0 
a L 2 J 

u0 = — [2/3X7- » (e' + 27Ar)Isinfl 
a L 2 J 

(5) 

Substituting equations (4) and (5) into equation (3) in­
tegrating and neglecting terms of 0(/32) we finally have the 
modified Reynolds equation in the form 

L \ 2 / dx J d6 L V 2 / 30 J 
/ 7 \ 3/J 

(4/3X7-6-27*) cos0 + /3 X- 4 cos0 1 — 
\ ot /ox 

dx 

f (e + 2 7 * ) ^ ( A sin0) (6) 

In equation (6) h is a dimensionless film thickness // = h*/C. 

• Nomenclature -

C = radial clearance, R — r0' 
e = eccentricity 

F* = force 
F = d imens ionless force, 

F*/irr'0
2Ps 

h* = film thickness 
h = d i m e n s i o n l e s s f i lm 

thickness, h*/C 
!min = time dependent dimen­

sionless minimum film 
thickness 

lmm = lowest value of hmim during 

periodical oscillation 
I* = piston moment of inertia 
L = piston length 

M* = moment 
M = dimensionless moment, 

M*/irr'Q
2LPs 

m* = piston mass 
m = d imens ion l e s s mass 

m*V2/2-Krl2LPsP 
N = number of piston lengths 

travelled by piston during 
one complete cycle of 
stable motion 

n = system parameter, pp(pp-

Ps = driving force per unit cross 
section area, L(p„ - pf)g 

p" = pressure 
p = dimensionless pressure, 

P'/P, 
pe = dimensionless pressure 

differential across piston 
q = leakage 

Re = Reynolds no., p/Kr0 '//i 
r* = radius 

r = dimensionless radius, 
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Its expression, accurate up to an order (3, is 

h=\-(e + 2yx) cosd-^(e + 2yx)2 sin26 (7) 

The boundary conditions of equation (6) are 

p = Oatx = - 1/2 

p = pe at x = 1/2 

where pe is a dimensionless pressure differential across the 
piston. Also because of symmetry about the plane of motion 
we have 

36 

at 6 = 0 and at 6 = IT 

The Governing Equations of Piston Motion 

where I*, the piston moment of inertia, is I* = m{L2/12 + 
r'0

2/4). 
Using the dimensionless forces, moment, axial velocity X, 

and a dimensionless time in the form 

t= t* 
2L0 

the dimensionless equations of motion become 

m\ = Fl +1 

me = 2aF2 

.. 12a3 

3 +or 
M, 

(10) 

Pressures and shear stresses produce forces and moments Substituting (9) in (10) we obtain three equations with four 
on the piston which together with the buoyancy and gravity time dependent unknowns e, y, X, and pe. The fourth 
control the piston motion. Consider a coordinate system equation needed to complete the set is obtained from the flow 
ONtN2N3 fixed to the cylinder axis (see Fig. 2). The piston is r a te pass the piston. Consider a control volume ABCD as in 
moving in the plane ON{N2, hence, the force vector in this Fig. 3. The rate of change of pitson's volume in this control 
system has the components F[ F^ while the moment vector volume equals the leakage across the section AB. Hence, 
has only one component M3*. If T'X and r9* are the axial and 
tangential shear stresses, respectively, and p* is the pressure 
on a surface element ds, then 

^i" = \ [T'x cosr+(T,,* sind+p* cose) smT]ds-irr'0
2Pe cosT 

F2'= \ [T'X s in r - ( r 9 * sinB+p* cos0) cosr]cfe-7r/-o2A,* sinT 

^ 3 = - I [(P*** + T**'"o) cosd + TgX* sind]ds 

Evaluating the shear stress on the piston surface and 
neglecting terms of order fi2 we have [10] 

icr'0
2(U cosT + e sinF)= -q (11) 

(8) 

F, = -pe- — P f (h^E. -4yp cos6») dxdd 
1 7T JO J - l / 2 \ dX ' 

Fo = 
2a. i«xr(p^-^*E-^)dxd*-
7T JO J-1/2K 2 36 ' 

2^7 

-.-TL'r„[<r-^f)— ! ' 1 - H 
(9) 

The three equations of motion are 

m*U*=Fl + W 

m*e=F'2 

I*Y=M; 

The leakage q across the section AB is the same as the leakage 
across any section parallel to^45. Thus, 

+ h* (•/•„ +n f2T 
= L* Jo ("*)**=o',*rfWr* (12) 

-Nomenclature (cont.)-

''o = 
R = 
t* = 

t = 

tP = 
U = 

r*/r„ 
piston radius 
cylinder radius 
time 
d imens ion less t ime , 
Vt*/2LP 
dimensionless period time 
axial velocity 
velocity vector 
dimensionless velocity 
vector, |3u*/K 
dimensionless velocity 

vector on piston surface 
V = characteristic velocity, 

&Ps/6nr;L 
W* = driving force, irr'0

2L(pp — 
Pf)S 

x*,y* = coordinates 
x, y = dimensionless coordinates, 

x*/L, y*/C 
a = length ratio, L/r^ 
(3 = clearance ratio, C/r„ 
T = tilt angle 
7 = dimensionless tilt angle, 

TL/2C 

5 = 

X = 

/* = 
Pf = 
PP = 
T* = 

a[(l - /3/2)/(l + i3/2)]l/! 

dimensionless eccentricity, 
e/C 
a n g u l a r c o o r d i n a t e 
measured from plane of 
minimum film thickness 
d i m e n s i o n l e s s a x i a l 
velocity, U/V 
viscosity 
fluid density 
piston density 
shear stress 
dimensionless stress, r*/Ps 
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N, 

Ns 

'Ni 

OT^N 

Fig. 2 Pressure and shear stress components 

Substituting equation (12) in (11) and using equations (4) and 
(5) for (ux)x=0, integrating over y, and neglecting terms of 
order fi2, we finally obtain 

± [ > ( l + ? ) | L U = A(l+ffl 
7T JO L V 2 / dX J * = 0 

2a2 67 (13) 

Equations (9), (10), (13) and equation (6) with its boundary 
conditions completely define the functions e,y, pe and X. 

Motion Stability 

The modified Reynolds equation, equation (6), gives the 
pressure p as a function of e, y, \, and pe which are all time 
dependent. The pressure p can then be used in (9) to find Ft, 
F2, and M3 which are substituted in (10). Equations (10) and 
(13) are then solved simultaneously giving e, y, X, andpe as 
functions of the time t. This approach is straightforward, but 
very costly in terms of computer time. Hence, we shall 
examine cases where analytical solution of the modified 
Reynolds equation are possible. One such case is that of small 
perturbations about the concentric equilibrium position of the 
piston. The other case is that of a short piston where the 
circumferential pressure gradient in (6) can be neglected 
compared to the axial one [11]. 

Small Perturbation Analysis. Consider the case of a 
concentric piston, that is e = 7 = 0. Under these conditions 
we have h = 1, axisymmetry prevails and equation (6) 
becomes 

Fig. 3 Control volume for leakage calculation 

(-4) a*2 =0 

Hence 

Po=PeO ("T) 
where p0 and p^ are the pressure distribution and pressure 
differential, respectively, for the concentric case. 

From equations (9) we obtain 

^i = -.P«oa + 0> 
and 

F2=Mi=0 

which by substituting in (10) give 

1 - ^ ( 1 + / 3 ) = 0 
From (13) we have 

A o ( l + y ) = \)<l + 0> 

Hence, for (32 < < 1 

Xo = l 

(14) 

(15) 

From (14) and (15), it is clear that the concentric position is 
an equilibrium one withprt and X0 constants. Assuming small 
perturbations e and 7 about this equilibrium, that is 

X=X0 + X, = l - y | 3 + X 1 
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0 4 0 0 800 1200 1600 2000 2400 2800 \ 

Fig. 4 Minimum film thickness, hmtn, as function of time. Unstable 
piston /3 > pc. 

800 1600 2400 3200 4000 4B00 5600 t 

Fig. 5 Minimum film thickness, hmln, as function of time. Stable 
piston j3 < 0Cf 

Pe=PeO+Pel=l-P+Pel 

h = h0+hl = l+hi 

P=Po+P\ = ( 1 - ® ( * + T ) +P\ 

where X,, pel, ht, andp , are very small compared to unity as 
e and X are. Equation (6) can now be solved analytically [12]. 
The pressure p is substituted in (9) and (13) which, after 
linearization give a set of four linear equations. Solving this 
set it can be shown [12] that the perturbations ei and 7, are 
increasing in time. That is, the equilibrium of the concentric 
position is unstable. 

Short Piston Finite Perturbations. As was shown by the 
small perturbations analysis the concentric position is un­
stable. Thus, two possible cases exist. A stable case where the 
piston oscillates with constant amplitudes of e and 7 without 
touching the cylinder, and an unstable case where the 
oscillation amplitude increases in time until the piston hits the 
cylinder wall. Evidently, finite perturbations analysis is 
needed but the problem can be simplified by assuming a short 
piston, thus, enabling analytical solution of equation (6). 

For short pistons a2 < < 1 hence, by neglecting terms of 
order a2 and /? compared to unity but retaining terms of order 
/3/ a2 equation (6) becomes 

Tx(h3^) = ~ (e' + 2 ^ - fi^y cos*)cos(? (16) 

The boundary conditions for equation (16) are 

p = 0 at x = - l / 2 

and 

X 
2 4 

•6-

0-8-

2000 4000 6000 

Fig. 6 Dimensionless axial speed, X, as function of time. Stable piston 

The film thickness, with terms of order /3 neglected, is 

h=\-(e + 2yx) cos 6 (17) 

In order to simplify the writing we shall define the parameters 

7cos0 
s= 

1 - ecosfl 

h' = 1 - 2sx 

5t =73cos20 
2 2 a 7 

s2=~cose 
Using these parameters equation (16) can be written in the 
form 

dx \ dx / 
s s^ 

— (i + 2yx) + —y 
0[ 0 2 

(18) 

The solution of (18) with the proper boundary conditions of 
(16) is 

P=Pe 
(Is)1 

+ 

4s 

y 
85, 

1 

L(^ ) 2 - ] 
+ ~8~v;&7 T2)\~h;~~h72~~lL) 

f 2 1_s2 . 1 , , 1 / i - ^ 2 \ 
^h' h'1 s \ 2h' I 

2 , l+s 
In 

l-s 

+ — [(1 - s ) 2 l n ( l +s) - (1 +s)2In(l -s)]) (19) 

Substituting equation (19) in (9), neglecting terms of order /? 
compared to j3/a2, integrating and using equations (13) and 
(10) give a set of four nonlinear differential equations [10] for 
the time dependent variables 7,e,X, andpe. This set is solved 
numerically [12] using Runge-Kutta technique and the func­
tions y, e, \ andpe are obtained for each time point t. 

From (17) it is clear that the minimum film thickness, hmin, 
between the piston and cylinder wall occurs at either 6 = 0 or 
6 = 7T and at x = 1/2 or x = - 1/2, Hence, the time 
dependent function hmin is 

KinU)=l-\e(t)\-\y(t) 

The criterion for stable motion is h 

(20) 

P=Pe at x= l /2 

min > 0 at all t. If hmin 

vanishes, that means piston-cylinder contact and such case is 
considered an unstable. 
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Table 1 Summary of the results for stable motion 
a = 0.5 

ixlO3 xlO3 N 

10" 

108 

2 
4 
6 
8 

10 
12 
14 

2 
4 
6 
8 

10 
12 
14 

10.0 
11.5 
12.5 
13.2 
13.8 
14.3 
14.8 

25.1 
28.9 
31.3 
33.1 
34.7 
35.9 
37.1 

0.890 
0.904 
0.911 
0.917 
0.920 
0.925 

47.0 
49.6 
50.7 
51.7 
52.6 
53.4 

0.110 
0.096 
0.089 
0.083 
0.080 
0.076 

Unstable, /3 •• 

2.06 
2.08 
2.09 
2.10 
2.10 
2.10 

132 
157 
183 
203 
220 
238 

0.914 
0.921 
0.926 
0.929 
0.932 
0.934 

63.8 
65.4 
66.1 
66.6 
67.0 
67.4 

0.086 
0.079 
0.074 
0.071 
0.068 
0.066 

2.06 
2.09 
2.10 
2.10 
2.11 
2.11 

Unstable, )3 = 0„ 

334 
376 
422 
457 
492 
528 

Results and Discussion 

Examples of two cases, one unstable the other stable, are 
presented in Figs. 4 and 5 which show the time behavior of 
hmiB. The pistons in both cases have length over radius ratio a 
= 2 and a system parameter n = 108 where n is defined as 

n = m- (21) 

The parameter n is used to eliminate the effect of /3 in m which 
by 

m* = irr0
2Lpll 

and by the definition of Ps and Kis given as 

PpiPp-
m- 12n 

Pf)g . /3 5 

r0 — 

Hence, from (21) and (22) 

Pp(pP 

lip 

Pr) .3 
-^gro 

(22) 

(23) 

The only difference between the two cases shown in Figs. 4 
and 5 is in the clearance parameter 0. The unstable piston has 
(3 = 0.058 while the stable one has a slightly smaller value /3 = 
0.056. These two cases were chosen to demonstrate the critical 
value f}cr which for a = 2 and n = 10s is about /3„ = 0.057. 
In the case shown in Fig. 4, where /3 > j3c„ the minimum film 
thickness hmin vanishes at t = 2900. In the other case, Fig. 5, 
where /3 < I3cr the piston oscillates periodically with hmin 

always larger than a certain value hmm which remains constant 
in time and is hmm = 0.26. Fig. 6 presents the time variation 
in X for the stable piston and it is seen that oscillation about 
an average velocity X = 1.3 takes place. Figs. 5 and 6 are 
typical of any stable case that is, whenever (5 < ficr a 
periodical motion takes place. 

The falling distance of a stable piston along the cylinder 
axis during one period can be calculated from 

L Jo 
Udt* (24) 

where N is a dimensionless distance expressed as the number 
of piston's lengths travelled during one period. Using the 
normalized velocity and time equation (24) becomes 

N=2p\'" 
Jo 

\dt (25) 

About 50 different cases were examined. These include 
pistons of length over radius ratios a = 0.5 and a = 2, and 
system parameters values n = 108 and n = 1010. At each 
combination of a and n various clearance parameters j3 were 

analyzed starting from large /3 which assures unstable motion, 
hmin = 0. The parameter (5 was then gradually decreased until 
the first value of (3 that gives stable motion was found. A 
search for (3cr was then performed in the interval between the 
j8 values corresponding to the last unstable and first stable 
case. After /3„. was found some more stable cases with fi < /3C/. 
were examined. The values of emax and ymas corresponding to 
the amplitudes of e(t) and y(t), respectively, where found 
along with the value hmm which gives the minimum film 
thickness during the periodical oscillation. Also the average 
velocity \av, and the dimensionless falling distance N 
corresponding to the period time tp were calculated. The 
results of 24 stable cases are presented in Table 1 for pistons 
of a = 0.5 and in Table 2 for pistons of a = 2. The critical 
values /3cr are also indicated for each set of a and n. 

From the tables it can be seen that as /3 decreases the 
oscillation amplitudes of e and 7 decrease too and hmm in­
creases as expected. Also as (3 decreases the average velocity 
\av and the falling distance Nduring one period decrease. 

An interesting result is the small value of 7raax which in­
dicates that the piston oscillates while its axis remains almost 
parallel to the cylinder axis. For a = 0.5 the amplitude of e is 
quite large, in the range of 0.9 for all values of (3 examined. 
The critical value pcr is ft., = 0.015 for n = 1010 and /3„ = 
0.037 for n - 108. The average axial velocity is about twice its 
value in a concentric position. 

For a = 2 the amplitudes of both e and 7 are smaller, emax is 
in the range of 0.6 to 0.7 and 7max is almost zero. Since the 
oscillation amplitude is smaller than in the case a = 0.5 the 
average velocity Xa„ is closer to unity, being only 50 percent 
higher than the concentric piston velocity. 

Although the finite perturbations analysis assumes short 
piston, that is, small a, results for a = 2 were also obtained to 
enable comparison with the experiments reported in [7]. The 
validity of the results for a = 2 can be evaluated based on the 
results in [11] where it is found that for 7 = 0 the short piston 
analysis can be used as a good approximation for finite 
pistons provided the eccentricity e is not too large. For a = 2 
the upper limit of e for valid approximation is according to 
[11] around 0.7. Hence, the results obtained here are con­
sidered acceptable for the stable cases when 7max =: 0 and emax 

< 0.7. However, the accurate value of /3„ is somewhat 
suspected for a = 2 since at (3 = (3cr hmin = 0 and neither 7 
nor e are small. 

Another difficulty in comparing the present analytical 
results with these of ref. [7] is due to a very slow convergence 
of the numerical solution at a = 2 when m < 8. The piston-
cylinder system in [7] had n = 3.7 x 106 for which a critical 
clearance parameter j8„ was found between 0.0179 and 
0.0264. Hence, from m = nfi/a., even for 0 = 0.0264 the 
dimensionless mass in [7] was only m = 0.024 < < 8. In the 
case of very small values m the solution of the set of eqs. (10) 
requires singular perturbation approach [13]. This, however, 
would exceed the space limitation of a single paper. 

In trying to overcome the above mentioned difficulty it was 
found that the most important parameter affecting con­
vergence of the numerical solution is m. When plotting hmm 

versus m, a critical value m„ can be found similar to $„. That 
is whenever m > m„ the piston is unstable and whenever m < 
mcr the piston is stable. However, as opposed to /3„, the 
critical value m„ is not very much affected by the system 
parameter n. Figure 7 presents results of hmm as function of 
m. As can be seen from the figure at a = 0.5 mcr = 14 and at 
a = 2 mcr = 32 almost regardless of n. This interesting 
finding enables one to obtain the value of ficr for any desired n 
from an already know /3*r corresponding ton*. 

Since for a given a, m„ = m'cr and is independent on n we 
have from (21) 

nP5
cr = n*P'cr

s 
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Fig. 7 Dimensionless minimum clearance, hmln, as function of 
dimensionless mass, m 
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Fig. 8 Dimensionless falling distance, N, in each period as function of 
dimensionless mass, m 

or 

(26) 

Using this approach one would find for n = 3.7 x 106 and a 
= 2 a value /?„ = 0.11 which is about 4 times higher than Pcr 
found in [7]. This discrepency is probably due to a large error 
introduced by the short piston approximation as hmm ap­
proaches zero. Nevertheless, for the stable cases where emax 
does not exceed 0.7 the results of the short piston ap­
proximation seem to be reasonably valid even at a = 2. 

n 
10lu 

108 

Table 2 Summary of the results for stable motion 

m 

8 
12 
16 
20 
24 
28 
32 

8 
12 
16 
20 
24 
28 
32 

/3xl0 3 

17.4 
18.9 
20.0 
20.9 
21.7 
22.4 
23.0 

43.7 
47.4 
50.2 
52.5 
54.5 
56.2 
57.7 

emax 

0.627 
0.654 
0.671 
0.686 
0.698 
0.708 

0.658 
0.683 
0.701 
0.715 
0.727 
0.737 

a = 2.0 

Ymax X 103 

2.05 
2.14 
2.19 
2.23 
2.26 
2.30 

Unsta 

3.27 
3.37 
3.43 
3.50 
3.56 
3.64 

Unsta 

'hum 

0.373 
0.347 
0.329 
0.314 
0.302 
0.292 

ale, 0 = & 

0.342 
0.317 
0.299 
0.285 
0.273 
0.263 

\v 

1.44 
1.48 
1.50 
1.52 
1.53 
1.54 

1.49 
1.52 
1.54 
1.55 
1.56 
1.56 

Die, 0 = /3cr 

N 

66.9 
75.7 
82.2 
87.5 
91.8 
95.2 

121 
135 
146 
154 
160 
163 

Fig. 8 presents the dimensionless falling distance, TV, in each 
complete cycle. The variation of TV is almost linear having a 
decreasing slope as n or a increase. The distance travelled 
during each complete cycle is quite large being at a = 2, for 
example, always greater than 50. As n decreases the distance 
TV increases. 

In [7] pistons about 1.5 cm long were released in a water 
filled vertical tube and their motion examined along a falling 
distance of about 50 cm. When /3 was less than the critical 
value no evidence of any oscillation was detected and it was 
concluded that for /3 < /3cr the pistons were moving smoothly 
down the tube. The present analytical results are in line with 
this observation since the falling distance in [7] was only 
about 30 piston lengths while the calculated TV for the tests 
with n = 106 is at least 150. Hence, in [7] the falling distance 
was only 20 percent of one complete cycle and since 7 = 0 (see 
Table 2) the change in e could not be noticed over the short 
distance examined. 

Conclusions 

The governing equations for the motion of a piston closely 
fitted in a cylinder are derived based on the assumptions of 
lubrication theory. It is found that a piston driven by an axial 
force in a cylinder filled with an incompressible fluid has an 
equilibrium in the concentric position provided the axial force 
is the only external force acting on it. However, this 
equilibrium is unstable and as a result concentric motion is 
impossible, leading to an oscillating motion. 

Stability of the oscillations is determined by a critical value 
of the clearance ratio /3„. If /? > ficr the oscillation amplitude 
increases in time. If /3 < Pcr, stable oscillation with constant 
amplitude takes place. In this case the piston is moving almost 
parallel to the cylinder axis changing its eccentricity 
periodically. The distance travelled by the piston during one 
complete cycle is usually very long being of the order 102 of its 
length. 

The short piston approximation gives good insight into the 
phenomenon of flow induced vibration in piston-cylinder 
systems. The theory fairly well agrees with experiment in that 
both show unstable motion when the clearance ratio is above 
a critical value (3cr. 

The theoretical values of ficr are too high compared with 
experimental results. This is probably due to large errors 
introduced by the short piston approximation at high ec­
centricities associated with unstable pistons. Another 
limitation of the present analysis is the extremely small time 
steps required in the numerical computation whenever the 
dimensionless mass m (equation (22)) is small. It is believed 
that better correlation can be achieved by testing piston-
cylinder systems with larger system parameters n or larger 
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mass m, and by solving the complete Reynolds equation for a 
finite length piston. 
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Sensitizing the Dissipation 
Equation to Irrotational Strains 
The paper recommends the addition of an extra term to the conventional ap­
proximate transport equation for the turbulence energy dissipation rate. The term 
may be interpreted as emphasizing the role of irrotational deformations in 
promoting energy transfer across the spectrum or, equivalently, of augmenting the 
influence of normal strains. Calculations, including the new term, are reported for 
the plane and round jet, and for several turbulent boundary layers. In the cases 
considered the addition of the new term significantly improves agreement with 
experiment. 

Introduction 
The 1970's have seen a distinct changeover in the ap­

proaches used to approximate the Reynolds stresses in the 
numerical simulation of turbulent shear layers. At the 
beginning of the decade the models in use were commonly 
based on the notion of a universal profile of mixing length 
across the shear flow under study - or on some other equally 
rudimentary assumption. Even the calculation procedure of 
Bradshaw, Ferriss and Atwell [1], which was perhaps the first 
practical scheme to incorporate stress-transport ideas, 
assumed a universal length-scale distribution across the 
boundary layer. In the early years of the 70's, however, 
several publications appeared (e.g., references [2-6]) which 
discarded the universal-length-scale concept in favor of a 
length scale obtained from the solution of a rate equation. 
The most popular approach, adopted inter alia by references 
[2-5] has been to solve an approximate transport equation for 
the dissipation rate of turbulence energy, e. The local length 
scale is then proportional to k3/2/e, where k is the local 
turbulent energy. 

The influential Stanford Conference on Turbulent 
Boundary Layers (see Kline, et al. [7]) took place before the 
appearance of this new generation of turbulence models. A 
few years later, however, Ng and Spalding [8] made 
predictions of all the Stanford test cases using three models of 
turbulence: a version of the mixing length hypothesis; that of 
reference [1]; and a two-equation model in which the local 
effective viscosity was taken proportinal to pk2/e. The main 
conclusion drawn from this comparison was that, given the 
uncertainties in the initial conditions and in the two-
dimensionality of the data near separation, none of the 
models could be identified as superior to the other two - at 
least, not on the basis of that group of shear flows. 

A corollary that is sometimes added to the above result is 
that the two-dimensional boundary layers chosen for the 
Stanford Conference provided a too narrow range for model-
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refinement purposes. The idea is that by extending one's field 
of view to include wall jets, free shear flows and even 
homogeneous flows, one may deveop a model of such 
generality that the problem of predicting the turbulent 
boundary layer will automatically be dealt with. Several 
groups of workers, including the present writers, have at least 
partly accepted this philosophy. On the face of it, this 
direction of development has been rather successful. A study 
for the Langley Free Shear Flows Conference showed decisive 
superiority for models that obtained the length scale from 
transport equations [9] while more recently the second-
moment closure of Launder, Reece, and Rodi [10] was suc­
cessfully applied to predict the development of a plane-strain 
distortion, a jet, a wake, the fully-developed flow in a plane 
channel and the boundary layer on a flat pate at high 
Reynolds numbers. 

Thus, it could be said that models existed which predicted at 
least certain representatives from several different classes of 
turbulent flow. Whether or not this meant that the models 
would work, let us say, for all the boundary layers in the 
Stanford Conference Proceedings (Coles and Hirst [11]) was 
not examined at the time. With hindsight, however, it may be 
said that several discouraging portents were available. Rodi 
and Spalding [3] had reported that the length scale equation 
used to predict the plane mixing layer and the plane and radial 
jets did not produce "realistic results" when applied to the 
round jet in stagnant surroundings2, while in reference [10], 
the calculated growth rate of the far wake was markedly too 
low. Rodi [12] had shown an even more serious discrepancy in 
predictions of momentumless wakes, i.e., those generated by 
self-propelled bodies. Now, the far wakes differ from the 
successfully predicted shear flows of [10] by virtue of the 
relatively large importance of convective transport. In the 
round jet, mean and turbulent velocities decay rapidly in the 
stream-wise direction. One might therefore infer that, 
whenever external conditions produced either rapid changes 
or large imbalances between generative and destructive 
agencies, available models were liable to give anomalous 
results. 

More recently Launder and Morse [15] found that the closure of [10] 
predicted a rate of growth for the round jet that was 50 percent too high. 
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Of the flows included in the Stanford Conference, two that 
proved elusive to accurate prediction were boundary layers 
recovering from strong disturbances and those held near 
equilibrium in a prolonged adverse pressure gradient. At the 
outset of the present study computations were made of 
representative boundary layers of this type using the stress-
transport model of [10]. As we had feared, the calculations 
(which will be discussed later) showed the same kind of 
discrepancies as the earlier study of reference [8]. The main 
errors in the predictions were attributable to the dissipation 
rate transport equation since, if ad hoc adjustments were 
made to the dissipation rate to produce the correct turbulence 
energy level, broadly the correct mean field development was 
predicted. Our attention was therefore directed towards 
diagnosing and removing the weaknesses in the model. A 
promising approach that the authors have been developing 
entails providing different sets of response equations for 
different parts of the turbulence energy spectrum; the 
preliminary results of this study are reported in references [13] 
and [14]. In the course of evolving that fairly elaborate 
description, however, it appeared that a very simple 
modification to the commonly employed dissipation rate 
equation would also achieve significant improvement in 
predictive accuracy in several situations. Here we discuss the 
rationale for the modification and show the benefits of in­
cluding it in several flows that were hitherto poorly predicted. 

The Proposed Dissipation Rate Equation 
The energy dissipation rate is usually calculated from a 

transport equation of the following form: 

Dt 
- C — + 2 D , (1) 

where Pk denotes the generation rate of turbulence energy (by 
mean shear, buoyancy, etc.,) and 3De is the net diffusion rate 
of e arising from inhomogeneities in the flow. The quantities 
cj| and ce2 are usually taken as constants: reference [9] for 
example suggests the values 1.43 and 1.92, respectively, when 
equation (1) is used in conjunction with a two-equation 
viscosity model while, in the stress-transport closure of [10], 
the corresponding values are 1.44 and 1.90. These very similar 
pairs of constants have arisen from matching the decay of grid 
turbulence (which fixes ce2 in the range 1.80-1.95) and then 
optimizing c d to obtain the best agreement with the measured 
rates of spread for a number of well-documented free shear 
flows. 

Equation (1) is the simplest conceivable form of transport 
equation that will produce at least qualitatively correct 
behavior for e. The equation must have both a source and a 
sink term in order that large generation rates of turbulence 
energy lead to high dissipation rates and, if energy generation 
is switched off, the dissipation rate diminishes fast enough to 
prevent the turbulence energy becoming negative. 
Qualitatively correct responses are one thing, quantitatively 
correct predictions quite another. It would therefore be 

unreasonable to expect much in the way of generality from 
this basic form - indeed, the degree of success that has been 
reported seems quite remarkable. 

There have been several proposals for extending the width 
of applicability of (1). Some of these introduce non-local 
characteristics of the flow, (reference [9] for example) while 
others retain strictly local properties but introduce additional 
invariant parameters of the mean or turbulence field. Lumley 
and his colleagues (e.g., reference [16]) allow the quantity ca 

to be a function of the anisotropy of the Reynolds stress 
tensor.3 The anisotropy responds less rapidly than does Pk to 
changes in mean strain and its presence in the equation 
modifies the sensitivity of e to changes in external conditions. 

Pope [17] introduced a term which may be interpreted as an 
additional generation rate of e due to the stretching of mean 
vorticity (Pope argues that, though the stretching of turbulent 
vortex lines is really what one is interested in, the large-scale 
turbulent motions tend to be aligned with the vorticity in the 
mean flow). The term is zero in a plane two-dimensional flow 
because the mean vortex lines do not change their length. In 
an axisymmetric round jet, however, they are stretched as the 
jet enlarges downstream; the additional term thus raises- the 
level of e and consequently reduces the Reynolds stresses and 
the spreading rate. No other tests of this modification have 
yet been reported. 

The present proposal has certain similarities with the above 
though it has been arrived at from a different line of ex­
ploration. In [14] the writers propose a transport equation for 
the rate of energy transfer out of the energy containing 
motions (which, except in local equilibrium, is not the same as 
the energy dissipation rate). The equation originally had an 
exactly parallel form to (1). We found, however, that to 
predict correctly the variation of turbulence energy in 
irrotational flows through a nozzle a substantially higher 
coefficient was needed for the equivalent of cd than for, let us 
say, the plane jet or mixing layer. The idea that energy 
transfer rates across the spectrum were preferentially 
promoted by irrotational deformations seemed at least 
plausible. 

Now, since energy in transit across the spectrum ends up as 
energy dissipated, there is the implication that equation (1) 
should also benefit from a term that promotes higher rates of 
dissipation for irrotational than for rotational strains. This 
characteristic can be imparted to equation (1) by introducing 
on the right-hand side a term proportional to: 

, dUj dU, 
K - — . £ , * f 

dxj dx„ ijktlmk (2) 

3The anisotropy may be defined as (w,«y-2/3 A: 5,y) («,-«/--2/3 k 5jj)/k2. 

Our own experiences, admittedly based on a narrow range of shear flows, 
have been that introduction of the anisotropy brings only marginal benefits. 
The multi-scale approaches described in [13] and [14] seem better able to 
simulate the spectral time lag between changes in the large-scale energy-
containing eddies and responses in the time-scale dissipative motions. 

-Nomenclature -

cf = skin friction coef­
ficients (T,V/ ViplP;„) 

c d , c d = empirical coefficients 
in dissipation 

ca> ct3 = rate transport equation 
3)e = net diffuson rate of e 
H = boundary layer shape 

f a c t o r ( r a t i o of 
displacement: momen­
tum thicknesses) 

k = turbulent kinetic energy 

_i> = 
v2 = 

U = 

V, 

u.„ = 

(kinematic) UJUJ/2 
static pressure 
/-direction component 
of Reynolds normal 
stress 
s t r e a m w i s e m e a n 
velocity 
component of mean 
v e l o c i t y , t e n s o r 
notation 
m a x i m u m m e a n 

velocity at particular 
station (free stream 
velocity for boundary 
layers , cen ter l ine 
velocity for jets) 

U0 = reference free stream 
velocity upstream of 
deceleration 

UT = f r ic t ion ve loc i ty , 
(TW/P)'A 

u, = turbulent component of 
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where tijk stands for the third-order alternating tensor and the 
multiplicative coefficient must be negative. For two-
dimensional thin shear flows (with the possible exception of 
flows following curved paths) the term sensibly reduces to 
k(bU/by)2 or, equivalently, to: 

/k2 bU\ bU e 
W d v / ' 

e viscosity model 
by / dy 

Now, within the framework of the k 

k2 bU -
— — oc-uv (3) 
e dy 

and so the original term appearing in (2) may be replaced by 
— bU e 

^Tyk 
(4) 

where cj3 is a positive coefficient to be determined. On adding 
(4) to the first term on the right side of equation (1) and 
decomposing Pk into its component parts, the total con­
tribution due to mean strain emerges as: 

— bU I — at; 
dy 

-ce3(u 2 _ . >>%) (5) 

where c • = (cji - ca) a n d ce: Now, since c'a is a 
positive quantity, cel is smaller than cti. We can thus rein­
terpret the new term as augmenting the effect of normal strain 
generation relative to that due to shear strain.5 The complete 
dissipation rate transport equation may be written 

De — bU e e2 

Dt=-C^UVTyk~C<2T bx k 

We note that cel should take approximately the same value as 
c'ci in equation (1) since, if the effects of streamwise changes 
in U are negligible (as, for example, in fully-developed 
channel flow), equations (1) and (6) are identical in form. In 
the present study, following [10], we take cfl = 1.44 and ce2 

= 1.90 while cc3 is given the value 4.44. 
Two types of shear flows have so far been examined: free 

jets in stagnant surroundings (axisymmetric and plane 
geometries) and boundary layers in adverse pressure 
gradients. The latter have been computed with the Reynolds 
stress closure of reference [10] using equation (6) in place of 
the original dissipation equation and (as in [10]) with diffusive 
transport represented by 

* '^k de\ 

dy V e by' 

The jets have been computed using the simpler k ~ e viscosity 
closure. Our reason for doing so was partly that experience 
has shown mean field characteristics of self-preserving free 
shear flows to be predicted equally as well with that model as 

3D =0.15 (7) 

with the more elaborate Reynolds stress transport model 
(Morse, private communication) and partly that, for the 
axisymmetric jet, the stress-transport equations are rather 
tricky to solve numerically with the finite-difference scheme 
used here [IS], [18]. With the k ~ e model diffusion of e is 
approximated as 

2De = 0.09 — — 
V 6 by) 

(8)6 

while the normal-stresses appearing in (6) and in (10) below 
are expressed in terms of the turbulence energy by 

(«2-t72) =0.33A: (9) 

The kinetic energy equation and the stress-strain relation are 
standard: 

Dk — bU ,-, -,,bU nnnd/k2dk\ „ „ 
= _ „ „ ( M2_„2) e + 0 - 0 9 / j ( 1 0 

Dt by bx by \ e by/ 

-uv = 0.09 
k2 bv 

e by (11) 

The Patankar-Spalding [18] finite-difference procedure used 
as the basis for the numerical computations adopts a nor­
malized stream function, co, as cross-stream variable. Con­
sequently the most accessible bU/dx is that along a line of 
constant <u>. It is emphasized that this is not the appropriate x 
derivative for use in equations (6) and (10); rather, one needs 
the rate of change along a constant —y line. This derivative 
has been obtained in the course of computations by assuming 
the shape of the velocity profile to be invariant between the 
upstream and downstream end of any forward step, as 
proposed by Launder and Morse [15]. Predictions of the shear 
flows reported below have been obtained using 28 cross-
stream nodes. In the case of boundary-layer computations, 
the node adjacent to the wall was located far enough from the 
surface to lie in fully turbulent fluid. The wall shear stress was 
obtained from the streamwise velocity at this node using the 
well known semi-logarithmic law of the wall. 

Near-wall boundary conditions for the other dependent 
variables were obtained from local-equilibrium estimates as 
described in reference [10]. 

Discussion of Computed Results 
The computed and measured behavior for the jets are 

compared in Figs. 1-4 and in Table 1. The self-preserving 
mean velocity profiles shown in Figs. 1 and 2 are in 
satisfactory accord, the only noticeable difference between 
the measured and calculated behavior being a calculated 
approach to the free-stream conditions that is too slow near 
the edge of the plane jet. The corresponding kinetic energy 
profiles, shown in Figs. 3 and 4, also display satisfactory 

In speaking of "normal" and "shear" drains one should strictly add that 
this applies to a coordinate system in which one axis points in the direction of 
the mean velocity vector. 

Nomenclature (cont.) 

The value of the diffusion constant in (8) was raised from the "standard" 
value of 0.07 in order to improve the shape of the turbulence »nergy profile 
towards the edges of the jet. 

UV 
,2 W = 

X = 

v e l o c i t y , t e n s o r 
notation 
kinematic Reynolds 
stress, tensor notation 
turbulent shear stress 
streamwise component 
of Reynolds normal 
stress 
coordinate direction 
parallel to free stream 
Cartesian coordinate, 

tensor notation 
y = cross-stream distance 

coordinate (denotes 
radius from symmetry 
axis for round jet) 

ylA = cross-stream distance 
from plane or axis of 
symmetry to point 
where mean velocity is 
half axis value 

(5 = p ressure g rad ien t 

parameter (5* /T„ , ) 
dp/dx 

S = b o u n d a r y l a y e r 
thickness 

<5* = b o u n d a r y l aye r 
displacement thickness 

e = rate of dissipation of 
kinematic turbulence 
energy 

p = density 
TW = local wall shear stress 
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Table 1 Rates of spread of plane and round jets 
dyVl/dx 

Fig. 1 Mean velocity profiles in plane jet in Stagnant surroundings: 
measurements, Robins [21] 

predicted 

_u_ 
Urn 

Fig. 2 Mean velocity profiles in round jet in stagnant surroundings 
measurements, Rodi [19] 

predicted 

Fig. 3 Turbulence energy profiles in plane jets in stagnant sur­
roundings 

measurements, Bradbury [20] 
predicted 

accord in view of the difficulties of obtaining accurate tur­
bulence levels in these high-intensity flows. One notes in 
particular that the difference in the shape of the energy 
profiles between the round and plane jet is correctly 
reproduced by the numerical computations. The most in­
teresting characteristic of the results appears in Table 1 which 
lists the rates of spread of the two flows as obtained from 
experiments, from the proposed form of the k ~ e model and 
from the k ~ e model without normal strain amplication. 
With the original model, the calculated rate of spread is 5 
percent higher for the round jet than for the plane one; ex­
periments suggest, however that the spread of the round jet is 
the slower by fully 20 percent. The present computations 
show a great improvement over the original k ~ e model; the 

Flow 

Plane jet 
Round jet 

k 

Um2 

Expt. 

0.110 
0.86-0.90 

1.0 

0.8 

0 6 

0.4 

0.2 

0 

f = ^ 
i i 

Standard7 

k — c model 

0.109 
0.115 

Present 
model, equation (6) 

0.116 
0.098 

i - - i 

1.2 

Fig. 4 Turbulence energy profiles in round jet in stagnant sur­
roundings 

measurements, Rodi [19] 
predicted 

i.o 

au/ax 

au/ay 

0.6 

0.4 

- 0 . 2 

Fig. 5 Ratio of stream wise: cross velocity gradients in jets 
planejets; roundjet 

rate of spread of the round jet is now some 17 percent below 
that of the plane jet. Interestingly the effect of introducing the 
extra term reduces the growth of the round jet but increases 
that of the plane jet. The reason for this contrasting behavior 
may be inferred from Fig. 5 which shows the predicted 
variation of axiahcross-stream velocity gradients in the two 
flows. In both flows dll/dx is negative near the plane or axis 
of symmetry and positive toward the outer edge. In the case of 
the round jet, however, the strength of the velocity decay in 
the near-axis region is far greater than for the plane jet. Now, 
when dU/dx is negative the generation due to normal strains is 
positive, creating higher levels of e and lower energy and 
shear-stress levels. In the outer region of the jet all these 
features are reversed; the net outcome, however, is that the 
overall level of e is increased and, by virtue of the lower ef­
fective viscosities, the rate of spread is reduced. For the plane 
jet the region of negative dU/dx extends only to 0.65yVl; over 
the remainder of the shear flow fluid is accelerating and this 
produces a net increase in the rate of spread. 

Turning to the wall boundary layers, Fig. 6 shows excellent 
agreement of the mean velocity and Reynolds stress profiles 
with Klebanoff's [22] measurements for zero streamwise 
pressure gradient. This comparison serves to indicate that in a 
slowly developing flow with a uniform external-stream 
velocity the modification introduced to the e equation has 
negligible effect: the predicted pattern is sensibly the same as 

'Withe el 1.42 ce2 = 1.92. 
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Fig. 6 Mean velocity, shear stress and turbulence intensity profiles in 
flat plate boundary layer: measurement, Klebanoff [22]; 
predicted 

0.002 

0.0015 

0.001 
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2.0 
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1.0 
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X (in) 

90 

- . / 

1 1 
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1 
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60 80 

Fig. 7 Skin friction and shape factor in equilibrium boundary layer in 
adverse pressure gradient o , • measurements, Bradshaw [23], 

present predictions 
predictions with model of reference [10] 

reported in reference [10]. The next boundary layer con­
sidered is the Stanford Conference Flow 2600-1, an 
equilibrium boundary layer in adverse pressure gradient 
measured by Bradshaw [23]. In this flow the free stream 
velocity varies as x~°-25S. Fig. 7 shows the variation with 
streamwise distance of the skin friction coefficient, and the 
shape factor, H. The initial conditions for the computations 
corresponded to those for zero pressure gradient. There is 
thus a rapid initial variation in cf and H as the boundary layer 
relaxes to its equilibrium condition from about x = 20 in. 
onwards. The original model of reference [10] produces levels 
of wall shear stress that are abut 40 percent too high; by 
comparison, the predictions obtained with the modified e 
equation are on average 7 percent too low. Both versions 
predict generally satisfactory agreement with the measured 
shape factor, though here, too, the variation produced with 
equation (6) is superior. 

Bradshaw [24] produced a further set of experiments in 
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Fig. 8 Shape factor and friction factor in non-equlibrium layer in 
adverse pressure gradient o measurements, case "A" , Bradshaw [24] 
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Fig. 9 Shape factor and friction factor in non-equilibrium layer in 
adverse pressure gradient o measurements, case "C , " Bradshaw [24] 

present predictions 
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which an initial region of uniform free stream velocity 
preceded the application of the adverse pressure gradient. 
Three cases were studied in which the effects of different 
initial boundary layer thickness were examined. Here we 
report comparisons for the two extreme cases. Figs. 8 and 9 
show the development of the experimental values of Cj and H 
together with the predicted variations obtained with the 
standard e equation and with equation (6). For the case of the 
thicker initial boundary layer (layer C) shown in Fig. 9 the 
present dissipation equation produces a variation in almost 
complete agreement with the data. The standard e equation, 
however, leads to the attainment of a self-preserving flow at 
about x = 55 in., beyond which the level of skin friction 
coefficient remains invariant. Consequently, at the final 
measuring station, the calculated wall stress is 30 percent too 
high. Agreement would evidently have deteriorated further 
had the region of adverse pressure gradient been continued. 

The level of agreement is less satisfactory in the case of 
layer "A" where the boundary layer displacement thickness 
at the start of the adverse pressure gradient was only 40 

38/Vol. 102, March 1980 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.103. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.5 

Fig. 10 Development of pressure gradient parameter p (= (h"h„) 
dp/dx) forcase"A" 
o experiments, Bradshaw [24] 
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Fig. 11 Developments of mean velocity profiles for case "C . " Profiles 
shown at x = 24 in; 36 in. and 72 in. 
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Fig. 12 Development of shear stress profiles for case "C . " Profiles 
shown at x = 24 in.; 36 in.; 48 in. and 72 in. o 7 • A measurements, 
Bradshaw [24]; present predictions 

percent of that for layer "C." The experiments exhibit a more 
rapid decrease in ty than either of the calculated variations, 
though here, too, the modified e equation comes substantially 
closer to the measurements than does the original version. It 
seems at least possible that there is some further factor in­
volved, however. The experimental data show initially a more 
rapid rise in shape factor for the layer "A" than for layer 
"C." This is unexpected since the same external pressure 
gradient habitually produces a greater effect on thick 
boundary layers than on thin ones. A possible explanation 
might be that, due to the thinner boundary layer in the case of 
layer "A," the initial deceleration was more severe8. The 
consequences of such an eventuality may be conveniently 
discussed in terms of the pressure gradient parameter 8 whose 
variation for case "A" is shown in Fig. 10. 

We note first, that if j3 were invariant with x, the boundary 
layer would be said to be in equilibrium (see, for example, 
[25]) and the levels of cf and //would also be nearly constant; 
the larger j3, the lower the value of Cj. Now, in the present case 
i8 grows continuously with distance downstream. If, locally, 
the adverse pressure gradient were steeper than estimated the 
displacement thickness would grow faster than the calculated 
value even if the model were perfect. Thereafter, when the 
pressure gradient returned to the estimated value, a short 
distance downstream, the level of /3 would still be larger than 
the calculated value because the displacement thickness would 

Reference [24] reports only a single free-stream velocity variation for the 
three tests. 

be greater and the shear stress lower. Through this double-
edged effect it seems that situations may arise where the 
calculated boundary layer is never able to "catch up" with the 
actual development. From Fig. 10 it is clear that the error in (3 
develops suddenly between the 30 in. and 36 in. stations and 
remains of virtually the same magnitude over the rest of the 
test section. 

Figs. 11 and 12 show the development of the mean velocity 
and shear stress profiles for case "C" as measured in 
reference [24] and as calculated with the modified e equation. 
There is generally a satisfactory agreement between the two 
though difference of up to 20 percent between the measured 
and calculated shear stress are present in the central region of 
the boundary layer. 

Concluding Remarks 
The comparisons of the previous section have shown that a 

minor modification to the dissipation rate equation has 
brought substantial improvement to the prediction of 
boundary layers in adverse pressure gradients and has gone a 
long way towards accounting for the round jet paradox. In 
closing, however, it behooves us to caution potential users 
against expecting too much from the present formulation. In 
its present state the e equation is still a highly simplistic model 
that will certainly fail badly in some situations. By way of 
example, the present equation has done nothing to improve 
the rate of spread of the plane wake. The present version, like 
the original k ~ e model, produces as asymptotic growth rate 
about 35 percent less than the measurements. 

Perhaps the most useful lesson the writers have learned is 
that the e equation (which had remained virtually unchanged 
for seven years) can quite easily and rationally be improved to 
allow the applied strtain field to exert subtle yet unexpectedly 
large effects on the level of the energy dissipation rate. (We 
had formerly intended to abandon entirely single-scale ap­
proaches in favor of the multi-scale framework developed in 
references [13] arid [14].) One may expect that the addition of 
further terms, such as those proposed by Pope [17] or Lumley 
[26] will further extend the range of shear flows describable by 
a single set of transport equations. 
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Introduction 

Impulsiwe Motion of a Sphere at 
Supersonic Speeds 
This paper presents an analytical transient solution to the subsonic flow near the 
stagnation region of a sphere >vhich starts impulsively at a constant supersonic 
speed. The analysis is based upon a series expansion in time of the flow variables 
and of the shape of the moving shock. The coefficients of the series are determined 
analytically by substituting the series into the differential equations of motion and 
the standard Rankine-Hugoniot jump conditions. The series is extended over 30 
terms at stagnation point and up to nine terms near the sonic point. The first four 
terms are in agreement with the known solutions. By recasting them in Euler's 
transformation, the series is analytical beyond their natural region of convergence. 
The results match the experiments and are in agreement with the known steady-state 
numerical solutions. 

Consider an impulsively started sphere at supersonic speeds 
in a uniform stationary flow-field. At time t = 0, an attached 
bow shock wave forms instantaneously in front of the sphere. 
At subsequent times, the bow shock wave moves away from 
the body surface until a stationary detached shock wave is 
formed. The flow field in the nose region between the moving 
shock wave and the stationary body surface is subsonic. The 
behavior of the transient process in that region and the time 
requirement to establish a stationary shock wave are of 
considerable interest in connection with the use of a high 
speed test facility, such as shock tube applications, gas gun 
shots, and the like. 

Cabannes [1] carried the first two terms of a series solution 
by expanding the series in time of the motion of an obstacle at 
supersonic speeds in a stationary flow field, but the shock 
stand-off distance was in error by a factor of four in com­
parison with experiments. Bausset [2, 3] extended Cabannes' 
solution to the first four terms in the expansion but failed to 
find the time required for establishing a stationary detached 
shock wave. Miles, Mirels, and Wang [4] obtained the 
trajectory of the detached shock wave in front of an im­
pulsively started flat-nosed, semi-infinite cylinder but gave no 
experimental verification of their results. Unfortunately, all 
of their analyses are limited to the transient solutions for the 
shock front at the stagnation region and no other useful in­
formation such as the transient behavior of the surface 
pressure is provided; hence, their results are limited in their 
application. 

For a blunt-body problem, it is known that a singular 
limiting line appears upstream of the bow shock wave [5, 6]. 
When a sphere begins to move forward impulsively at 
supersonic speeds, in the early stages, the velocity of the shock 
wave at the stagnation region is much faster than that 
downstream. When the shock front reaches 80 percent of the 
stand-off distance, the shock velocity at the stagnation region 
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NUMERICAL SOL. (REF 7) 

FIRST METHOD 

MODIFIED METHOD 

Fig. 1 Shock configuration after stabilization (M„ =00 and y = 1.4) 

is considerably slower than that downstream. Thus the shock 
wave begins to fluctuate. Because of the existence of the 
upstream singularity which is closer to the fluctuating shock 
wave near the sonic point than the stagnation region of the 
body surface, the series begins to diverge after few terms of 
expansion. The expansion of such a series must be terminated 
before any large divergence to occur. Now, with a limited 
number of terms of the series for obtaining a meaningful set 
of solutions, some techniques must be developed. The 
mathematical expression for an arbitrary nose shape is 
cumbersome. For simplicity, we limit our analysis to the 
sphere only. An extension of this method to the other nosetips 
is straightforward. A nonspherical nose, for example the 
paraboloid, may yield a more accurate solution. The ob­
jectives of this paper are to extend the Cabannes' series to the 
higher order, to examine the effect of the singularity in the 
transient flow, and to develop a method for improving the 
series solution within the region of interest. 

Formulation of the Problem 

Let our basic frame of reference be the spherical coordinate 
system (R, d, <p) with the origin at the center of the sphere 
(Fig. 1). Then, the appropriate governing differential 
equations describing the flow field within the shock layer are 
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the standard conservation equations. 

P, + ^2 ( " ^ 2 ) « + -R^tou sinS), = 0 

u uv 1 
M, + U«« + -Ue+ — + ^Pt)=0 

u u2 1 
r>, + w * + - t>„ - — + -pR = 0 

03/pT), + y ( p / p ^ ) R + - ( p / ^ ) 8 = 0 . 

0) 

Similarly, we expand all flow variables, p, p, u, and v, in 
powers of /, take derivatives with respect to t and 0, and set 
them at R = Rs, for example, the normal velocity component 

TVs = vt + vRR,= S n u . + i r 1 

3f 

ae 
vs = vg + vRRe = ^ t ^ " " 1 - £ uj"~ (5) 

Substituting the foregoing expressions, v„ ve, u„ ue, p„ pe, 
pt, and pe, into equation (1) yields a system of ordinary 
differential equations for uR, vR, pR, andpR; for example, 

Let F(R, 6, t) = 0 be the trajectory of the moving shock wave. 
The boundary conditions at the shock wave are given by the VR — 
standard Rankine-Hugoniot relations of a perfect gas 

-(AR s /P)E l -(ypRsRs6/p)E2 + (A2- ypR2
e/p)Ei 

A(A2-ypR2/p-ypR2
s9/p) 

2 / M „ V y-

7 + 1 \Mm / 7 + 

r 7 - l 2 
AR,e,t)=l/\ J—- + 
sV L7+I 7 + 

1 1 

7 + 1 yMl 

1 

7 + 1 M2 (2) 

. „ 2 TMB 1 1 Re 

"^9^me+yTi[^-MjrJw^ 
2 r M „ 1 1 R 

vs(R,ej)= - c o s ^ — [ — - j ^ - J ^ ^ 

rtiTioo • 

1 

M„M„. 

e) 

where 

at R = RS 

A=(v-RJRs-uRs$, 

(6) 

d d d 
Ex = -yp(2v + ucot6)-Rs—ps-u—ps-yp — us 

d d d , 
E2= -uv — Rs — us — u — us— —ps/p, dt dd 30 

E3 = u2-Rs — vs-u--vs. 
dt 30 

Using 

where 
vs(d,t) = vb+vR\R=R JRS-Rb) (7) 

R r iVi 

M „ = M „ ( F , - c o s 0 -smd)/\l + (R0/R)2\ . 
R L J and equation (3), we equate the terms of like powers of t to 

zero and obtain a system of algebraic equations which 
determine the coefficients for the shock wave. Once the 

The boundary condition on the body surface is simply given coefficients,/„, in equation (4) are known, then the other flow 
by variables may be obtained accordingly. 

The algebraic expressions for these coefficients are cum-
vb(R,d,t) = 0 atR = Rh = l. (3) brous. We write only the first few terms for illustration 

Method of Solution cos0 w 
First Method. First, we expand the equation for the shock /1 = - cos0 + ——- 1 + 1 — ) +1 , 

, 1, 2p (. L \M m COS0/ J J 
wave as follows; ^ °° 
F(Rs,6,t) = Rsm 

-[Rb+A(e)t+Md)t2+M6)ti + .. .]=o. 

/ =--f sin0 + — ~27p,cos0 + pjsine - 2«1sin20 
(4) 2 2 ' 2/3 2 / 1 a 1 + ( 2 / , a i - 7 / 7 1 ) [ i + l / (a 1 M„) 2 ] , 

Substituting the foregoing expression into equations (2) and 
equating like powers of t result in series equations for the flow 
variables ,ps, ps, us, and vs. 

A- 3 ^ - / 1 / 1 ) s m 0 + 3 / 8 [ 1 + 1 / ( a i M - 1 5 j , 

/ . = - \\fi-f2fi-Mi-fi)\ 

Nomenclature -

F,f= shock function 
M = Mach number 

p, P = pressure normalized by 

t, T = time normalized by 

V = velocity normalized by 

u, v = velocity components 
normalized by Vx 

p = density normalized by ( ) ' = ( )e = derivative with respect 
Poo tO0 

( ) R = derivative with respect 
to J? 

( ), = derivative with respect 
tot 

7 = ratio of specific heats 
£ = parameter 

x, r, <p = cylindrical coordinate 
system (Fig. 1) 

R, 6, <p = spherical coordinate 
system 

A, 6 = s tand-of f d i s tance Subscripts 
normalized by Rb 00 = free stream condition 

X = t/(l3+ t), s = condition at the shock 
/? = constant listed in Table front 

2 b = condition on the body 
surface 

n = normal component 
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VmA -got, [tfiVj - / J / , ) + / i 2 a 2 / a i - [2a2a3-al/ai J / ^ M ^ ) 2 ) 

4/3[ 1+ !/(<*, M«,)2], 

where 

<*i 

<*3 

Pi 

= / l + COS0, 

= 3/3+(/ '2- /1 / l)sinfl ! 

7 + 1 
/(yMD, 

a2 = 2 / 2 +/ j sine, 

0 = 2/(7+1), 

p 2 = 20a, a2 , 

" / ! 1 : 

(p2 + 2ypi cos0 + p | sin0)/p, + / , (u2 - 2sin20) 

A-yPi/Pi 

v2 = 0a2 1 + 
1 

( a i M ^ ) 
-], Pl=l/[.IZJ_ + _^_] 

Here the assumption for a spherical nose, i?A = 1, is made, 
otherwise the above expressions become very complicated. 

For the case y = 1.4, 0 = 0, Rb = 1, and M«, = oo, we 
have 

Rs-l=A=±t-
14 , 392 

75 3375 
*s. 

2744 

50625 f + 
76832 

3796875' 

1075648 

170859375 ' :t" + 
4302592 

2562890625 V -
15059072 

38443359375 
/8 + . 

6 56 2744 , 32928 , 4994080 , 
3+ , 

11390625 
45177216 

170859375' -P + 
7800599296 

53820703125' 

58188254208 

807310546875' 
(9) 

Here the first two terms for Rs were found by Cabannes 
and the next two extended by Bausset. 

The algebraic expressions in terms of the rational numbers 
of integer arithmetic are limited for the case M^ = oo and 6 
= 0 because of existence of a square root for / , in equation 
(8). The computation for M^ k °° is carried out up to 30 
terms by a computer in floating-point arithmetic. The rate of 
convergence for the higher Mach numbers is faster than that 
of the lower ones. Even at a Mach number as low as 1.2, these 
number of terms are sufficient. 

The series in equation (9) may be written as: 

28 
1? * , - l = A = | j [ l - e x p ( -

= | [ 1 + y e x p ( - | r ' ) ] 

i 

Pb 

Ps=6. 

(10) 

for 7=1.4 , M,„ = oo, and 0 = 0. 

The foregoing expressions for an arbitrary Mach number 
and 7 are lengthy. For sake of brevity, we present these for 
M^ = oo, 7 = 1.4, and 0 = 0. From equations (2) and (10), 
we may see that the density behind the shock wave is constant, 
Ps — Pb = 6; a stationary shock wave, d/dt Rs = 0, may be 
formed as ?—oo; and the shock stand-off distance, A at t = oo 
is equal to 0.107, which is about 20 percent less than the 
known finite difference solution of Van Dyke and Gordon, A 
= 0.128 [7], and about 9.3 percent less than the constant 
density solution of Lighthill, A = 0.1183 [8]. The stagnation 
pressure at t = oo is equal to 0.8333, which is about 10 percent 

(8) 

less than the known solution of Van Dyke and Gordon, pb = 
0.9197. The inaccuracy of the above results is primarily due to 
the one-step forward finite difference expansion of the 
solution from the shock front to the body surface (equation 
(7)). Consequently, the detailed variations of the flow field 
within the shock layer are not adequately considered. The 
pressure gradient on the body surface, 

d 

dtP 

at MM = oo and 8 = 0 is equal to zero, hence, ps = pb. The 
pressure behind the shock front is usually less than that on the 
body surface, therefore, the underestimation on the 
stagnation pressure is expected. The velocity of the shock 
wave decreases monotonically. If we assume that a stationary 
shock front is established when the shock wave reaches 99 
percent of the stationary position, then the time required to 
establish a stationary shock front at M^ = oo, y = 1.4, and 0 
= 0 is equal to 2.467. 

At 0 > 0, no close form expression as shown in equation 
(10) may be found. The series begins to diverge after a few 
terms of expansion (9 or 10 terms for M„ = oo, at 0 = 30 deg 
where the sonic line is located, and fewer terms for the lower 
Mach numbers). The slow convergence of the series near the 
sonic point, particularly at low Mach numbers, is a problem 
frequently encountered in solving the blunt-body problem [5, 
6, 9]. As pointed out by Van Dyke, the difficulty is due to the 
existence a singular limiting line which is closer to the sonic 
point than the body surface. Such difficulty can, sometimes, 
be improved or removed by mapping the singularity away 
from the region of interest. Since the errors of the present 
exact solutions at the stagnation point are on the order of 10 
percent, no effort is made to improve the solutions near the 
sonic point. 

Modified Method. For a continuous and differentiable 
function there exists a £, fori?6 < £ < Rs, such that 

/ ' « ) = 
f(Rs)-f(Rb) 

Rs—Rh 
(11) 

Let £ = Rb, it gives a forward difference equation (equation 
(7)), and £ = Rs, a backward difference equation. When the 
value of f'(i = Rb) is markedly different from that of 
/ ' ( £ = ^ j ) . a n d higher derivatives are not present, it is 
desirable to set £ = Vi (Rs + Rb). Equation (7) is then 
replaced by 

M 0 » O = v b + v R ( £ ) 
{= - [Rs+Rb) 

•(Rs-Rb) (12) 

Here the series for vR (£ = Rh) is finite, and that for vR (£ = 
Rs) is infinite and has a small radius of convergence. Hence, 
the series for vR (£ = Vi (Rs + Rb)) is also infinite and has a 
modest radius of convergence. Let t = ~t at £ = Vi (Rs + Rb). 
Then the value of ? may be found from the inverse function of 
the equation defining the shock wave. Unfortunately, the 
inverse function of the shock wave converges very slowly and 
it is difficult to find ? from few terms of series expansion. To 
remedy this we may estimate the value of ? from the known 
solution as shown in Fig. 2 or from equation (10). It is found 
that i is approximately equal to ts/4, where ts is the time for 
the shock wave to reach its stationary position. (According to 
the first method it is the time for the shock wave to reach 99 
percent of the stationary position.) Also, a small deviation of 
t does not affect solution significantly. After two or three 
iterations, we may find / accurate to three significant figures. 
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Fig. 2 Shock wave trajectories (7 = 1.4) 
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Fig.3 Cauchy root test for the shock wave {N\x = 00, T = 1.4, and* = 
0) 

Table 1 lists the ratios of ts/1. Now, replacing r in vR (£) of 
equation (12) by t and equating like powers of t to zero result 
in a sequence of algebraic equations which determine the 
coefficients for the shock wave and other flow variables. The 
computations were carried out by using a double-precision 
routine on a CDC76 machine. The series is extended up to 30 
terms at the stagnation point and 9 terms near the sonic point. 

Any analytic function has a power series development at 
every regular point. The convergence within a circle extends to 
the nearest singularity. A function in any region, or even on a 
line segment, is ordinarily defined uniquely in a much larger 
region of the complex plane and can be completed by the 
process of analytic continuation. For a given series, the radius 
of convergence can be assessed by its coefficients. One of the 
most useful methods is a graphical version of the Cauchy root 
test. According to this test, the radius of convergence, R, of 
power series, T>fnt", is 

tf = lim | / „ | 1 / n 

The limit is most accurately estimated from a finite number of 
coefficients by plotting the roots, |/„ | 1/", versus l/n and by 
extrapolating the l/n to zero to find R. Fig. 3 is the plot of the 
first 30 terms of series defining the shock wave at the 
stagnation point showing a damped oscillation toward a limit 
at 0.4. The sign of the series alternates regularly with the 
exception of the first and eighth terms. This indicates that the 
nearest singularity does not lie in the region of physical in­
terest, but rather in its analytical continuation upstream of 
shock wave. (We also attempted using D'Alembert's ratio 
test, advanced by Van Dyke [10], and found the amplitude of 
the damped oscillation several times larger than the root test; 
it is more difficult to find an accurate value at the point of 
interception). Once the point of interception is found, the 
series can be improved by using the Euler transformation, 
recasting the series in powers of a new variable, X = ;/(0.4 + 

Table 1 Ratios of tjt 

M„ 
10 
6 
4 
•3 
2 

Table 2 

Ma,, 

10 
6 
4 
3 
2 

7 = 5/3 

4.42 
4.28 
3.95 
3.44 
2.85 

7 = 1.4 

4.96 
4.75 
4.42 
4.09 
3.55 

Locations of the nearest 

7 = 5/3 

0.488 
0.505 
0.534 
0.568 
0.642 

7 = 1.4 

0.408 
0.425 
0.454 
0.487 
0.560 

7 = 1.2 

5.75 
5.48 
5.05 
4.68 
3.98 

singularities /S 

7 = 1.2 

0.358 
0.378 
0.397 
0.429 
0.500 

t), instead of t. For example, 

Rs = 1 +/i(0)A+/2(0)A2 +/3(0)X3 + ... 

This implies that we mapped the nearest singularity away 
from the region of interest. Table 2 lists the values of the 
nearest singularities we have found by means of the Cauchy 
root test. 

Results and Discussions 

Figure 1 presents the bow shock at M„ = 00 and 7 = 1.4, 
after a nearly stationary position is reached. The dotted line is 
based upon the first method, in which the shock stand-off 
distance increases monotonically until a maximum value of 
0.107 is reached at / = 00. The solid line is based upon the 
modified method at the first occasion when d/dtRs = 0 at 8 
= 0. The shock stand-off distance from the modified method 
is equal to 0.119 which agrees with the constant density 
solution of Lighthill, A = 0.1186 [8]. When the velocity of the 
shock wave at 6 = 0 becomes zero and that at 6 > 0 does not. 
After d/dtRs = 0 at 8 = 0, the shock front begins to oscillate. 
In the first several oscillations, the shock stand-off distance at 
0 = 0 could be as low as 0.1 and as high as 0.15 with an 
average value of 0.119. At a much later time the amplitude of 
the oscillations becomes larger particularly at the downstream 
region near the sonic point. There is no occasion that the 
entire shock front becomes stationary simultaneously. These 
difficulties arise from the downstream singularities other than 
the one we have found. The solution from the modified 
method shows a significant improvement over the first 
method at the sonic point as well as the stagnation region. Fig. 
4 gives the complete set of the stand-off distances for 7 = 1.2, 
1.4, and 5/3; and Mach numbers from 2.0 to 10. Also 
presented are the experimental data of Syshchikova, 
Berezkina, and Semenov [11] for carbon dioxide and the 
numerical solutions of Van Dyke and Gordon [7]. The present 
solutions match reasonably well with the experimental data 
and are in good agreement with the numerical solutions at 
higher Mach numbers. 

Figure 2 represents the trajectories of the shock wave at 
various Mach numbers. Also shown is the numerical solution 
of Mils, Mirels, and Wang [4] for a flat-nosed infinite 
cylinder. The initial velocity of the present solutions follows a 
nearly straight line trajectory and is proportional to the Mach 
numbers. The conclusion is in agreement with the ex­
perimental data of Syshchikova, Berezkina, and Semenov 
[11]. After the shock wave reaches approximately 80 percent 
of the stand-off distance, the velocity for the higher Mach 
numers becomes much slower. Fig. 5 shows the time required 
to reach the various locations of the shock front. Also shown 
are the experimental results of Syshchikova, et al., and the 
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Fig. 5 Bow shock formation time 

numerical solution of Miles, et al. Because of three dimen­
sional relief effect, we expect that the shock formation time 
for the sphere shall be less than that of the flat-nosed cylinder. 
The shock wave approaches its final steady-state position 
asymptotically at a very slow rate. It is difficult to measure 
the time at which the shock front reaches its final steady-state 
position. Therefore, the available experimental data were 
taken at the time when the shock front reaches 80 percent of 
the steady-state position (5 = 0.8 A). At a first glance, we 
found that the time required from the experiments was too 
high. After careful studies on the series of the shadowgraph 
pictures (Fig. 1 [11]), we found that the time recorded on the 
experiments was started when the incident shock wave hits the 
tip of sphere. Immediately afterward, the shock wave moves 
away from the sphere at 8 = 0. In the downstream region, 6 
> 0, the shock wave moves continuously toward the surface 
of sphere. It reflects back after hitting the surface of sphere at 
a much later time. In the analytical model, we assume that, at 
t = 0, an attached stationary shock wave stands on the front 
of the obstacle. Thus, we are confident to state that the 
average time required from the experiments was twice longer 
than that of the analytical model. Because of this reasoning, 
the experimental data were scaled down by a factor of two. 
Here, it is interesting to note that the time required to 
establish a stationary shock wave is proportional to the Mach 

NUMERICAL SOL (REF7) 

- FIRST METHOD 

MODIFIED METHOD 

. 0 4 .08 .12 .16 

X 

Fig. 6 Surface pressure ( M „ = x and y = 1.4) 

NUMERICAL S0L IREF7) 

PRESENT SOLUTION 

Fig. 7 Stagnation pressure (7 = 1.4) 

number, this conclusion agrees with the Miles, Mirels, and 
Wang's analysis. The time to reach 80 percent of the stand-off 
distance is inversely proportional to the Mach number, and 
matches well with the experimental data. The present 
solutions are also compared with the experimental data of 
Zienkiewicz and Malloch [12]. Because their experiments were 
conducted at low Mach numbers, the agreement is relatively 
poor (Fig. 5). 

Figure 6 depicts the surface pressures for M^ = 00 and 7 = 
1.4 for both methods. The results from the modified method 
are in agreement with the known numerical solutions. Fig. 7 
shows the surface pressure at the stagnation point for y = 
1.4. The comparison is more favorable in the region of the 
higher Mach numbers. 
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Widely varying thermal expansion and deflection properties of existing non-metallic materials, for example, 
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Velocity Characteristics of 
Confined Coaxial Jets With and 
Without Swirl 
Measured values of the velocity characteristics of turbulent, confined, coaxial-jet 
flows have been obtained, without swirl, for ratios of maximum annulus to pipe 
velocities of 1.0 and 3.0 and with a swirl number of 0.23 for a velocity ratio of 3.0. 
They were obtained by a combination of pressure probes, hot-wire and laser-
Doppler anemometry. The results are compared with calculations, based on the 
solution of finite-difference forms of the steady, Navier-Stokes equations, and an 
effective-viscosity hypothesis. The measurements allow the influence of con­
finement and swirl to be quantified and show, for example, the increased tendency 
towards centerline recirculation which results from both. The results with the three 
types of instrumentation allow a comparison within the corner recirculation region 
which reveals that serious errors of interpretation of mean-velocity measurements 
need not arise. The two-equation model, although able to represent the non-swirling 
flow is less appropriate to the swirling flow and the reasons are indicated. 

1 Introduction 

The velocity characteristics of confined coaxial jets are of 
particular relevance to furnace and combustor flows and the 
previous investigations of Table 1 were carried out with these 
applications in mind. These previous measurements en­
compass a wide range of flows and were obtained by a 
combination of pressure probes, hot-wire and laser-Doppler 
anemometers. As indicated by Becker and Brown [8], for 
example, pressure probes are subject to errors in regions of 
significant flow fluctuations. Similarly, the analysis of hot­
wire signals becomes increasingly uncertain as the turbulence 
intensity increases above around 20 percent. Measurements 
obtained by laser-Doppler anemometry are also subject to 
uncertainty and, for those of references [3 and 4] the finite 
width of the filters used to analyze the Doppler signals limited 
the precision of mean-velocity results to, at best, ±2.5 
percent with correspondingly larger errors in normal stresses. 
Nevertheless, in regions of recirculation, such as are found in 
confined jet flows and in contrast to pressure and hot-wire 
probes, the unobtrusive method provides answers with 
determinable precision. 

The present measurements were obtained in the same 
geometrical configuration as that of reference [7] but included 
a swirling-flow arrangement and used laser-Doppler 
anemometry. The coaxial jets, with and without swirl, were 
identical to those used for the unconfined-jet investigation of 
Ribeiro and Whitelaw [9]. Thus, the results of references [7, 
9] and this paper allow comparison of velocity characteristics 
of confined coaxial jets with and without swirl and con­
finement. The present laser-Doppler anemometer results 

Contributed by the Fluids Engineering Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS and presented at the Winter Annual Meeting, New 
York, N. Y., December 2-7, 1979. Manuscript received at ASME Headquarters 
August 17, 1979. 

obtained without swirl also allow a detailed comparison 
between the two techniques in regions of flow recirculation 
and high turbulence intensity. A small range of measurements 
were also obtained with a three-hole pressure probe and are 
included in the comparison of measurement techniques. 

The flow configuration and instrumentation are described 
briefly in the following section which also includes an 
assessment of possible measurement errors. The results are 
presented in the two subsections of Section 3. The first 
subsection presents the results obtained without swirl and 
included a detailed comparison of the present results and the 
previous hot-wire results of reference [7], The measurements 
are intended mainly to facilitate understanding of isothermal 
confined flows with and without swirl and provide a basis for 
the understanding of related combusting flows. In addition, 
they are relevant to calculation methods such as that described 
in references [7 and 10] and the Discussion of Section 4 in­
cluded comments which assists an evaluation of the 
corresponding turbulence models. 

2 Flow Configuration, Instrumentation and Error 
Analysis 

Figure 1 presents a line diagram of the geometrical 
arrangement and a block diagram of the laser-Doppler in­
strumentation. The co-axial pipe arrangement is identical to 
that of reference [7, 9 and 11]; the confining chamber to that 
of reference [7]; and the swirler to that of reference [9]. 
Measurements were obtained with the two velocity ratios 
(Ua/Up) and swirl numbers indicated in Table 2; the velocity 
ratios and Reynolds numbers are based on maximum 
velocities. 

The three-hole pressure probe was similar to that described 
in reference [12]; it was calibrated in the potential core of a 
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Table 1 Previous measurements in confined-jet flows 
Author 

Wingfield 
(1967) 

Mathur, et al. 
(1967) 

Baker, et al. 
(1974) 

Baker, et al. 
(1974) 

Pai, et al. 
(1975) 

Owen (1976) 

Habib and 
Whitelaw 

(1978) 

Ref. 

1 

2 

3 

4 

5 

6 

7 

d0/De 

0.355 

0.402 
square 
duct 

0.183 

0.183 

0.25 

0.7 

0.356 

d,/d0 

0.526 
and others 

0.324 

0.218 

0.218 

0.262 

0.714 

0.485 

dp/dj 

0.327 

0.0 

= 1.0 

= 1.0 

0.8 

= 1.0 

0.745 

0a/up 
3.127 

00 

2.32 

2.32 

0.35 

12.0 

3.0 
1.0 

S 

0.0 

0.193 
0.415 
and 

others 
0.0 
0.52 

0.5 

0.0 

0.0 

0.0 

L/De 

6 

5.0 

3.0 

3.0 

8.5 

9.6 

4.76 

Instrumentation 

pitot probe 

pitot probe 

L.D.A. 

L.D.A. 

Prandtl probe 
hot-wire 
anemometer 

L.D.A. 

hot-wire 
anemometer 

0,'Up 
3.0 
3.0 
1.0 

Table 2 Flow conditions 

S Rea 

0 77,500 
0.23 76,000 
0 50,500 

Rep 

18,800 
18,540 
35,500 

round jet for the range of pitch angle experienced in the 
coaxial jet flows and introduced radially from the cir­
cumference of the cylinder. The total pressure measurements 
were obtained after the two static pressures had indicated the 
correct alignment of the total pressure hole. It may be ex­
pected to allow precise measurements at low turbulence in­
tensities and to give high values, with an error proportional to 
the turbulence intensity squared. Thus, with intensities of 
around 60 percent it will yield values of mean velocity which 
are approximately 10 percent high. 

The laser-Doppler anemometer comprised an Argon laser 
(Spectra Physics Model 164) operated at 488 nm and 200 mW. 
The laser beam passed through a water-filled acousto-optic 
cell which provided zero and first order beams with a 
frequency difference of 21 MHz [13]. The beams were 
separated to a distance of 71.5 mm, made parallel and 
focussed to their intersection by a 200 mm focal-length lens. 
Forward-scattered light was collected with a 100 mm diameter 
lens of focal length 150 mm and focussed to a pin-hole in 
front of a photomultiplier cathode (EMI 9815B). The optical 
components were secured to a 2 m long optical bench located 
as a milling table which allowed translation in two horizontal 
and orthogonal directions with a precision of better than 0.1 
mm. The more important characteristics of the optical 

Table 3 Optical characteristics 
Half angle between incident light 

beams 11.1 deg 
Frequency difference 21 MHz 
Transform relationship 0.752 MHz/m/s 
Length of intersection volume at 
e " 2 locations 0.3 mm 
Diameter of part of intersection 

volume observed by photo-
detector 0.095 mm 

Magnification of light-collection 
arrangement 1.5 

ar rangement are indicated on Table 3 . The plenum chambers 
of the annulus and pipe flow were seeded equally with a small 
quant i ty of atomized silicone oil. 

The signal from the photomult ipl ier was passed to an 
oscilloscope and to a spectrum analyzer (Hewlett Packa rd 
Model 9553B/8552A/141T) which was swept with band-
widths of 30, 100 and 300 k H z . A microprocessor evaluated 
the mean and rms velocity values, as described in reference 
[14] with the equat ions 

U=- 7 / = 2 sin W>/2) 2 sin (</>/2) 
\P(f)f df 

and 

^ - ( £ / - i / ) 2 = ( 

where 

J P ( J 0 df=\.0. 

2 sin (0/2) 
y' \p<j) w-/)2df 

0) 

(2) 

-Nomenclature-

De = the enclosure inner diameter 
d, = the annulus inner diameter 
d0 = the annulus outer diameter 

( = 2r2) 
dp = the inner diameter of the central 

pipe 
/ = frequency 
k - kinetic energy of turbulence 
L = the model furnace length 
P = probability density function 

Re = Reynolds number 
R = the model furnace radius 
r = radius 

S = swirl number, defined as: 

r 
Jo 

r2 UWdr 

S = 

rS2 riiP-ViVPWr 
Jo 

U = axial velocity 
u = axial velocity fluctuation 
v = radial velocity fluctuation 

W = tangential velocity 
w = tangential velocity fluctuation 
e = the rate of turbulence dis­

sipation 

Meff - effective viscosity 
X = light wave length 
<j> = crossing beam angle 
p = fluid density 

Subscripts 

a 
<L 
0 

P 

= annulus flow 
= the value at the centre-line 
= axis location at the inlet of the 

enclosure 
= pipe or pipe flow 

Superscripts 

— = mean value 

48/Vol. 102, March 1980 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.103. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



air distributers 
and silicone oil 

mirror 

f 

f accousto-

optic cell 

a rgon 

laser 

pitot probe 

comparison 

Tz 
reference 

hot wire 

measurements 

IS 

Fig. 1 Layout of the measurement techniques; Laser-Doppler 
anemometry, . Hot-wire anemometry, Pitot tube 

I B 
• 9 

« « i " S i l 
* 8 . 

0 s 

' ' H I , , 

0.5 

0 .4 -

0 .3 

0 . 2 

0.1 

0.0 

1.00 

8 * * o a 

0 O O 0 " 9 

o a » o o e 

| J i l I l 3 > ' 

3 u a a 0 i 
a * a 

2 » • ' • • . 0 s ; 3 

I 

° a u S o " 

„ D . . ' , ! ' » . 

I'Sfii11'' 
12 x/d 
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symbols, laser; closed symbols, hot wire 

In general, laser-Doppler anemometers with signal 
processing based on averaging of a number of individual 
frequency measurements may be subject to errors due to 
gradient and particle broadening, to incorrect measurement 
of signal frequency, to the number of signals used to form the 
average, to the method of averaging and to photodetector 
averaging. The optical errors experienced in the present flow 
are negligible and the spectrum analyzer reduces frequency-
measurement uncertainty to that associated with the band­
width of the filter which, with mean-measured frequencies in 
the range from 17 MHz to 60 MHz, did not exceed 1.0 per­
cent. The number of signals used to form the averages ranged 
from 6,000 to 25,000 and, in accordance with the calculations 
of reference [15] implies uncertainties of less than 1.8 percent 
in mean velocity and 1.7 percent in rms values. As indicated in 
reference [16] the averaging characteristics of the 
photomultiplier will bias the signal towards lower velocities 
but, with the present frequency shift, the effect may be ex­
pected to be small and negligible in the case of the rms values. 
An opposite bias stems from the method of averaging and, in 
view of the shape of the measuring volume and the various 
time characteristics of the electronic-processing in­
strumentation cannot be exactly determined. It is clear, 
however, from the results of reference [17] that the two effects 
are likely to be nearly equal for the present combination of 
optical and signal-processing instrumentation and no 
corrections have been applied. 

3 Results 

Without Swirl. Fig. 2 represents distributions of the mean 

axial velocity, the rms values of the axial velocity fluctuations 
normalized with the maximum pipe-exit velocity and the 
corresponding turbulence intensities for the two velocity 
ratios. The previous hot-wire measurements of reference [7] 
are reproduced on the same figure. As can be seen, the two 
sets of results of Fig. 2 are in general accord and confirm the 
corresponding conclusions of reference [7]. The magnitude of 
the differences in mean velocity does not exceed 10 percent of 
the maximum velocity for either flow. The maximum 
discrepancy between the rms values obtained by the two 
techniques is of the order of 17 percent of the maximum rms 
values for each flow and is associated with the higher in­
tensities and lower mean velocity values. In view of the 
rectification characteristic of the hot wire, it is to be expected 
that measured mean values should be high and rms quantities 
low in regions of turbulence intensity greater than around 30 
percent. Also any overall bias of the laser-Doppler 
anemometer results should cause the mean velocities to be 
high in regions of turbulence intensity greater than around 20 
percent but have little effect on the second moments. The 
discrepancies in mean values for x/De <2, where the tur­
bulence intensity is between 10 and 25 percent is probably 
associated partly with the method of analyzing the hot-wire 
signals and partly from a small overall bias to the laser results. 
In this region, the correct result can be expected to lie between 
the two curves and closer to the hot wire measurements. In the 
downstream region, where the turbulence intensity is high, 
both sets of mean values may be slightly high and the correct 
rms values should again be between the two sets of results but 
closer to the laser measurements. 

Radial profiles of the axial component of mean velocity and 
the corresponding rms values are presented on Figs. 3(a) and 
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3 (b). As can be seen from Fig. 3 (a), the results obtained by 
the three measuring techniques at an upstream station are in 
reasonable agreement provided the hot-wire results obtained 
in the region of recirculation are recognized as corresponding 
to negative values. Although the intensities in the recir­
culation region are very large, the magnitude of the dif­
ferences in measured values of mean velocity is small (<3 
percent) of the maximum velocity and around 40 percent of 
the local value: the differences in values of rms values are 
considerably larger with the hot-wire, as expected, giving the 
erroneously low results. 

The results of Fig. 3(b) at four x-locations, may be 
compared with the previous hot-wire results and support the 
conclusions of reference [7]. The mean velocity contours of 
Fig. 3 (c) represent a considerable interpolation of the results 
of Fig. 3(b) but indicate a recirculation region which in­
creases in length with increased velocity ratio. This increase in 
length is related to the increase in the total axial momentum, 
which is associated with the higher velocity ratio. The con­
tours of turbulence intensity clearly indicate the extensive 
region of high values. 

The pattern of the results is similar to that observed by 
previous authors, for example, references [1 and 3]. From 
examination of these results, it can be deducted that the length 
of the recirculation region is dependent on velocity ratio and 
on the dimensions of the geometry. For example, the increase 
in the velocity ratio from 1.0 to 3.0 (increase in the total axial 
momentum by a ratio of 2.067) increases the length from 
2.96De to 3.28£>e which corresponds to 9.2/r and 10.2h, 
respectively where h is equal to (R — d0/2). The present 
configuration is similar to the backward-facing step, see for 
example, Bradshaw and Wong [18], where similarity is held 
between h and the step height. The unity velocity ratio case 
has a rather uniform velocity distribution and therefore the 
length of the recirculation zone, 9.2h, can be compared with 
that of the backward-facing step of reference [18] i.e. 6h. The 
difference is likely to stem from differences in the geometry 
and axial momentum and a slight difference in the boundary 
layer thickness at the obstacle position. 

The agreement between the three sets of measurements is 
imperfect but this is unlikely to alter any fluid-dynamic 
conclusion. It can be expected, however, that both the laser 
and hot-wire anemometers will measure high modulus values 
of mean velocity and low rms values. In the region between 
the centre line and r/R of approximately 0.2, the turbulence 
intensity is comparatively small and the discrepancies may be 
attributed to the relative large length of the hot-wire sensor 
(1.25 mm). In the high turbulence region of recirculation, the 
laser-anemometer results can be expected to be within 20 
percent of the correct mean values and it is useful to note that 
the pressure probe, in spite of possible interference effects, 
yields similar results. 
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With Swirl, the laser-Doppler anemometer results of Fig. 2 
are reproduced on Fig. 4(a) which presents the measurements 
of mean axial velocity, the corresponding rms values and the 
turbulence intensities for a swirl number of 0.23. As 
previously observed by Ribeiro and Whitelaw [9] for their 
corresponding unconfined flow, the maximum rms velocity is 
closer to the jet exit plane with the swirl; a region of low 
velocity exists further downstream as the jet spreads more 
rapidly away from the centre line in the present flow. The 
axial distributions of the rms values of the two components of 
fluctuating velocity are similar in form with the cir­
cumferential component of very slightly lesser magnitude. 
This is again in accord with the free-coaxial jet. The maxima 
in the intensities are very much larger in the confined flow and 
are again located closer to the exit plane. The intensity of the 
free flow asymptotes to a value of around 0.25 and the present 
flow exhibits a similar tendency although from higher rather 
than lower values. Radial distributions of the axial and cir­
cumferential velocity components and the corresponding rms 
values are presented in Figs. 4(b) and (c). They are con­
sistent with the greater spreading rate of the swirling flow. 
The distributions of mean axial velocity and normal stresses 
are already near uniform at x/De of 3.67. At the upstream 
stations, the influence of the swirl on the mean velocity is 
obvious and results in a rapid change in the profile shape 
between x/De of 0.616 and 1.43. In particular, the near zero 
velocity on the centre line at x/De of 1.43 is accompanied by a 
relatively high velocity at r/R of 0.8: the normal stress is 
already near-uniform at this location. The distributions of 
swirl velocity show a similar trend to the axial velocity except 
near to the pipe exit. Indeed, at the three downstream 
measuring stations, the distributions are similar to those of 
solid body rotation with near-uniform normal-stress profiles. 

4 Calculations 

Equations representing conservation of mass, momentum, 
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turbulent kinetic energy and its rate of dissipation were 
represented in the general form 

dx. 
(Uj$)-

dx, 
( o* \ (3) 

and solved numerically. Details of the numerical scheme and 
the two-equation turbulence model may be found, for 
example, in references [19 and 20]. 

The boundary conditions corresponded to experiment 
wherever possible. Thus, the initial values of the components 
of mean axial and swirl velocity were known together with the 
respective normal stresses; the radial component of mean 
velocity was presumed zero. The initial values of dissipation 
rate were determined on the basis of a mixing length, i.e. / = 
0.03.R, where R is the radius of pipe or annulus and isotropy 
of the dissipating eddies is assumed. Symmetry and zero 
velocity on all walls were assumed and the flow was taken as 
fully developed at a downstream location where the results 
presented here were uninfluenced. 

Typical results are presented on Figs. 5 and 6 for mean 
velocities and intensities respectively. The centre-line mean 
velocity distributions of Fig. 5 show simple trends with the 
poorer agreement for the swirling flow. 

The results of Fig. 5 allow comparison between measured 
and calculated centre-line distributions of mean velocity for 
swirl numbers of zero and 0.23. As already indicated in 
reference [7] the general trends of the non-swirling flow are 
correctly represented but the velocity minimum and maximum 
have been underpredicted together with the length of the 
recirculation region. This result is consistent with the findings 
of reference [21] for bluff-body stabilized flows, where un-
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derprediction was found to be of similar magnitude with the 
two-equation and with stress models. The swirling flow does 
not have the same initial region of recirculation but, instead, 
has a downstream region of near-zero velocity. Again, the 
maximum and minimum of the measurements are not well 
represented. Extensive numerical tests have shown that these 
results are essentially grid independent and, although 
numerical errors may still exist due to stream lines which 
diagonally cross the cells, they are unlikely to be the cause of 
the downstream discrepancies in either flow, particularly since 
the maximum cell Peclet number was 0.88. 

In the non-swirling flow, the 20 percent discrepancy at 
x/De of 2 is associated mainly with the underprediction of 
turbulent diffusion. In the swirling case, the problem is 
compounded by additional streamline curvature and the need 
for additional generation terms in the equation for the 
transport of the Reynolds stresses. Bradshaw [22] has shown 
that eddy viscosity models do not represent this added 
generation and Morse [23] found it necessary to make the 
dissipation-equation constant Cel a function of the 
Richardson number to represent his free swirling-jet flows. 

The inability of the two-equation model to represent the 
velocity minimum on the centre-line of Fig. 5 is certainly 
associated with curvature effects and the inappropriateness of 
the presumed isotropic viscosity. As indicated by Rodi [24] 
and Gibson [25], for example, the assumption of a constant 
value for CM is inappropriate in curved flows; it has been 
shown to decrease rapidly with increasing Richardson number 
and to decrease with the ratio of turbulent production to 
dissipation. This suggests the need for the use of a model 
which does not require the specification of a value for C„, i.e. 

Fig. 5 Measured and calculated distributions of the mean velocity, o, 
Measurements; , Calculations, (a), S = 0.0; (b), S = 0.23. 

Fig. 6 Measured and calculated distributions of the kinetic energy of 
turbulence and normal stresses (S = 0.23) o, Measurements; , 
Calculations 

a model based on the Reynolds stresses, but this requires the 
solution of equations for all six stresses in the present case. An 
algebraic-stress-model aproach may provide a more palatable 
solution, if the magnitude of the present discrepancies is 
considered important. 

Fig. 6 indicates measured values of the two components of 
the rms of the velocity fluctuations and the kinetic energy. 
The agreement between the calculated and measured 
distributions of turbulence energy is excellent and suggests 
that the corresponding transport equation is a reasonable 
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representation. The two normal stresses are different by 
around 50 percent and this degree of anisotropy, of itself is 
probably insufficient to account for the discrepancy in the 
mean-flow results. The problem is consistent with that of 
reference [21] in that the extent of recirculation is under-
predicted; also in common with the bluff-body calculations of 
reference [21] tests with reasonably-different values of initial-
flow variables have shown that they are not responsible for 
the present discrepancies. In the present case the low 
production associated with the near centre-line region ensures 
that CM will be different from the prescribed value and 
probably leads to an incorrect representation of shear stress. 
This was certainly true of the non-swirling results of reference 
[7]-

5 Discussion 

The measurements allow a comparison between two ob-
strusive and one unobstrusive measuring techniques in regions 
of recirculation. Fig. 3(a) indicates discrepancies in the 
mean-velocity results on the recirculating region and at the 
velocity maximum. The hot-wire results are clearly incorrect 
but stem from a simple misinterpretation of the flow direction 
which can readily be appreciated. If rectified, they are in 
reasonable agreement with the laser anemometer results: the 
magnitude of the disagreement is of the order of 50 percent in 
some regions, due largely to the errors associated with the hot 
wire at the high values of local turbulence intensity but this 
represents less than 2 percent of the maximum velocity and is 
adequate for many purposes. Similarly, there are 
discrepancies between the pressure probe and laser-
anemometer results but they are of the same magnitude. At 
least in this flow, the effect of probe interference does not 
appear to be of major significance. The low values of velocity 
associated with the Pitot tube and the velocity maximum are 
due, at least in part, to the spatial average observed by the 
probe. 

The measured values of the rms of the velocity fluctuations 
show an expanded trend in the recirculating flow. The hot 
wire rectifies negative velocities and leads to values which are 
low whenever negative velocities are present. This is par­
ticularly noticeable in the region of recirculation, as 
previously observed by Simpson, Strickland and Barr [26], 
but is also present in the other regions of the flow where 
intensities are large. This is also shown by Fig. 2: the 
magnitude of the discrepancies are, however, seldom suf­
ficiently great to permit erroneous fluid mechanic con­
clusions. 

The present results indicate, with swirl, a region of near-
recirculation on the centre line and between one and three 
furnace diameters downstream of the exit plane. Thus, as the 
swirl number is increased from zero, this tendency towards 
recirculation grows and will ultimately be realised as shown 
for example in reference [3] with a swirl number of 0.5. The 
intermediate swirl number of 0.23 provides a flow which is 
probably more difficult to present by calculation methods in 
that the near recirculation region is located away from solid 
surfaces. Calculations, in the absence of swirl, avoid the 
complexity of the related dependent variables and associated 
terms. With a swirl number of 0.5, the initial region of 
recirculation is tied to the exit geometry and the downstream 
flow is more easily represented. 

The calculation of the non-swirling flow is imperfect but 
possibly adequate for many purposes. The representation of 
the swirling flow is less adequate and, even though the 
problem may exist over a limited range of swirl numbers, 
improvements are desirable. Empirical adjustments to 
constants may produce better results but a more satisfactory 

approach is to determine the extent to which an algebraic 
stress model, which allows for a non-isotropic viscosity, 
improves the calculations and to progress to a stress-transport 
model if required. 
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Dependence of Shock 
Characteristics on Droplet Size in 
Supersonic Two-Phase Mixtures1 

In a dispersed two-phase flow, the mixture chokes at a velocity well below the vapor 
choking velocity, as shown by the velocity at the throat of a converging-diverging, 
two-phase, supersonic nozzle. The formation and abruptness of a normal shock 
wave in a two-phase mixture depends strongly on the coupling between phases, par­
ticularly upon droplet size. As droplet size becomes small, the mixture behaves as a 
continuum, and sharp discontinuities can occur at velocities above the two-phase 
choking velocity but below the vapor sonic velocity. An approximate analysis is per­
formed to incidate the droplet size at which continuum behavior might be expected 
to occur. A numerical model, which includes the drag, buoyancy, Basset force, and 
the force associated with the virtual mass effect, is used to show droplet-size 
dependence in two-phase normal shock waves. For the examples presented, con­
tinuum behavior apparently is approached at droplet diameters between J and 2 
pm, even through normal shock waves. 

Introduction 

High-velocity two-phase flows represent an increasingly 
common consideration in technology. Examples include: 
nuclear reactor phenomenology, rocket motor flows, gas-
droplet flows in various combustion processes, water 
ingestion by jet engines during storms, and two-phase tur-
bomachinery. The present paper results from work on un­
derstanding the potential loss mechanisms associated with a 
turbomachine designed to operate on very wet two-phase 
mixtures [1]. 

Significant shock-associated losses can occur in high-
velocity two-phase-mixture flows when the fluid velocity 
exceeds the choking velocity of the two-phase mixture. The 
mass fraction of droplets in the mixture strongly affect the 
two-phase choking velocity as shown in Fig. 1. We define the 
two-phase choking velocity as the homogenous sound velocity 
of the mixture: 
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dp (i) 

In a dispersed flow the mixture chokes at a velocity well 
below the vapor choking velocity. This phenomenon is 
exhibited by the velocity at the throat of a converging-
diverging two-phase nozzle. Because the choking velocity is 
strongly affected by the mass fraction of dispersed liquid 
droplets in the mixture, even relatively low velocity flows can 
be supersonic with respect to the two-phase choking velocity. 
The formation and severity of a normal shock wave in a two-
phase mixture depends strongly on the coupling between 
phases - particularly droplet size. As droplet size becomes 
smaller, the mixture behaves as a continuum, and sharp 
discontinuities can occur at velocities above the two-phase 
choking velocity but below the sonic velocity of the vapor. 

In this paper we discuss the mechanisms of coupling bet­
ween phases and suggest an approximate analysis for 
predicting the droplet size that causes the mixture to behave as 
a continuum through a normal shock wave. Through the use 
of a two-phase numerical model for calculating sub- and 
supersonic flows, including shock waves, we calculated 
examples of the dependence of shock behavior of a two-phase 
mixture. Comparisons of shock behavior as a function of 
droplet size are made for flows above the two-phase choking 
velocity but below the vapor choking velocity and for those 
above the vapor choking velocity. 

Previous work in the area of two-phase shocks has been 
concentrated on predicting the relaxation region immediately 
following the maximum gradient in the continuum velocity, 
e.g. [2, 3], Such calculations were strictly one-dimensional. In 
this work, the quasi-one-dimensional formulation (including 
area change) and the solution of the hyperbolic form of the 
equations through the normal shock wave makes it possible to 
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determine the location of the shock as well as the flow con­
ditions both upstream and downstream. In addition, the 
virtual mass effect, the Basset force, the buoyant force, as 
well as the drag force, are included. 

Approximate Analysis 

The momentum coupling between the fluid and the droplet 
motion arises from the aerodynamic force on the droplet. The 
drag force consists of four components, the conventional 
steady-state drag (Stokes law or extensions thereof), the 

virtual mass effect, the buoyancy force, and the Basset force. 
The virtual mass term arises from the relative acceleration of 
fluid produced by droplet motion. The buoyancy force results 
from the pressure gradient in the fluid. The Basset force 
results from the unsteady viscous layer developing on the 
droplet. Typically, in flows where the vapor density is much 
less than the droplet material density, the buoyancy, virtual 
mass, and Basset forces are small compared to the steady-
state drag force. However, for vapor-droplet flow through a 
shock wave, the pressure gradients and accelerations are such 
that these terms cannot be neglected a priori. 

To estimate the interdependence of droplet size and a shock 
wave, we first assume that the steady-state drag force is 
dominant. We need to determine the droplet size when cou­
pling through a normal shock is so strong that continuum 
behavior prevails. A measure of the responsiveness of a 
droplet to a change in vapor velocity is the time for a droplet 
released from rest to achieve 67 percent of the vapor velocity. 
This characteristic time is estimated, assuming Stokes law is 
valid, by: 

Td = 
PdD

2 

(2) 
18 tiv 

For a \-jxm droplet, the time constant is of the order of 
microsceconds. A droplet of this size moving at 500 m/s 
travels less than a millimeter through a shock before losing the 
majority of its momentum to the vapor phase. Thus the 
vapor-droplet mixture acts essentially like a continuum and 
produces a well-defined discontinuity. A 10-^m droplet, on 
the other hand, has a characteristic time two-orders-of-
magnitude larger than that of the 1-jim droplet and travels 100 
mm before losing most of its momentum to the vapor phase. 
On the basis of response time, it is expected that mixture 
continuum behavior would be approached as droplet size 
approaches 1 ixm. 

Numerical Model 

To calculate the detailed dependence of two-phase shock 
behavior on droplet size and to include the effects of the 
various forces acting on the droplet, we used a numerical 
model [4] for calculating two-phase dispersed droplets in 
vapor flows. The quasi-one-dimensional model is based on: 
(a) an iterative solution of the time-dependent (hyperbolic) 
Eulerian equations for continuity, momentum, and energy for 
the two-phase mixture, (b) on the coupling of the numerical 
integration of the Lagrangian equation of momentum for 
droplets and the continuity equation for the droplet phase, 
and (c) on the equation of state for water. The Eulerian 
equations are integrated by use of the MacCormack algorithm 
[5]; the Lagrangian droplet equation is integrated using an 

-Nomenclature-

A = 
a = 
c = 

C 
D 
e 
E 
h 

H 
K 

area 
acceleration modulus 
homogeneous two-phase 
mixture sound velocity 
droplet drag coefficient 
droplet diameter 
specific internal energy 
Evector 
specific enthalpy 
//vector 
empirical constant 
mass flow rate 

p = pressure 
Re = droplet Reynolds 

UvDpv/[i 

number = 

t - time 
U = velocity 
U = U vector 
X = mass of vapor/unit mass of 

mixture 
Z = distance 
a = relative acceleration 
e = spacial-differencing step selector 

= lo rO 
H = viscosity 
a - surface tension 
p = mixture density 

Subscripts 

B = Basset 
d = droplet phase 
e = exit 
/ = spacial index 

n = present time index 
o = reference 
P = buoyancy 
5 = isentropic 
V = virtual mass 
v = vapor phase 

Superscripts 

C = corrector 
P = predictor 
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implicit form of the trapezoidal rule, the model includes phase 
velocity nonequilibrium and phase change. Phase change is 
based on the local pressure, using the saturation properties for 
water. Temperature nonequilibrium between phases can be 
included [6] but is considered unnecessary for the purposes of 
this discussion. 

The two-phase-mixture equations of continuity, 
momentum, and energy (in the Eulerian reference frame and 
written in vectorized conservative form) are given by: 

dV dE -
— + — +H=0 
dt dZ 

(3a) 

where: 

U = 

pA 

PA[XUv+(\-X)Ud] Ob) 

E = 

pA[x(^+ev)Hl-X)(^L+ed)} 

PA[XUv+(l-X)Ud] 

pA[XUZ+(l-X)Uj]+pA 

pA [XUV ( - ^ + * „ ) + ( ! -X)Ud ( i £ +hd)] 

,0c) 

H -P-
dA 

~dZ~ (.3d) 

To orient the reader who is unfamiliar with this form of the 
equations, we should point out that the mixture continuity 
equation results from substituting the first term (component) 
of the U (35), E (3c), and H (3d) vectors into (3a). The 
momentum and energy equations result in a similar manner 
from substituting the second and third components, 
respectively. 

The MacCormack Predictor-Corrector finite difference 
equations are written as follows: 

Predictor: 

Uf„ + i = U £ , - ^ - [ ( l - e ) E F + 1 , „ 

- ( l -2e)Ef I I -eEf_ l i ) 1 ] + A/HjF)I (4a) 

Corrector: 

U&+i = y (u& +U£„+1) - 1 ~ [eEf+1,„+1 

+ (1 - 2e)E£„+, + (e - l)Ef_, ] - y AtHe„+, (4b) 

For an individual droplet, the momentum equation derived 
in the Lagrangian reference frame is given by 

TtD1 dU, 
PdUd—J^ 2jFd> 

6 ""'" dZ 

where ^Fd represents the total forces acting on the droplet, 

(5) 

where FD, the drag force, is given by 

„ TTD2 

^Fd=FD+FB+FP+Fv, 

ce, is given by 

PvC(Uv-Ud) \UV-Ud\; 

the Basset force by 

FB=KBD2^icpvnv\ " 
Jo 

the buoyant force by 

1 d(U„-Ud) 

FP = 

<Jtn-t 

xD3 dp 

dt 
dt 

6 dZ ' 

and the force associated with the virtual mass effect by 

rf>3 d 
FV=K vPv~ (Uv-Ud). 

(6) 

(7) 

(8) 

(9) 

(10) 
6 dt 

The empirical constants Kv and KB [7] are: 

Kv = 1.05 - 0.066/(a2 + 1.02), 

KB=2.8S + 3.12/(a+l)3, 

where a is defined as 

a=\(Uv-Ud)
2/(aD)\, 

and a is the local difference in acceleration between the vapor 
and the droplet: 

(11) 
(12) 

(13) 

a=Jt(U„-Ud). (14) 

The droplet drag coefficient [8] is given by 
C = 3.271 - 0.8893 (In Re) + 0.03417 (In Re)2 + 

0.001443 (InRe)3, 0.1 < Re < 2 x 104; 

24 
' ~ " ' (15) C = -

Re 
0 < Re < 0.1. 

Because thermal equilibrium between phases is assumed, only 
one additional equation, other than the equation of state, is 
required to complete the solution. We can use either the 
energy or the continuity equation associated with the droplets. 
In this case, we have chosen the continuity relation which is 

(«^)]' (16) 

Finally, we use the equation-of-state relations (saturation 
properties as a function of pressure). The first group (17) is 
solved with the mixture equations, while the second (18) is 
used with the droplet equations. 

Pv=Pv(P)>Pd = Pd(P)>hv(p),hd 

= hd(p),ev=ev(p),ed=ed(p). 

V-v=V-v(P)>°=o(P)-

(17) 

(18) 

The numerical solution scheme is described in Fig. 2. The 
mixture equations (3) are solved with the equation-of-state 
functions (17) to determine mixture density, vapor velocity, 
vapor mass fraction, and pressure. The droplet equations (5) 
and (16) are then solved for droplet velocity and droplet 
diameter. The process continues iteratively until the problem 
converges and steady state is reached. Further details of the 
numerical scheme and the boundary conditions are given in 
[4]. A short discussion of the handling of the Basset force, 
however, is in order, because it has not been previously 
described for this numerical scheme. The integration of the 
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Input and initialization 

• 

Solve Eulerian equations with 
EOS relations, using MacCormack 
technique to determine: 
P, P, Uv, X 

1 

Solve Lagrangian droplet 
momentum and continuity equations, 
using implicit trapezoidal rule 
to determine: D, Ud 

• 

Converged? 

Yes 

Output 

' 

End 

No 

Fig. 2 Numerical solution scheme 

"history" of the droplet (8) was accomplished by ap­
proximating the droplet and vapor velocity across a 
calculation cell as linear with time; summing the expression 

FBi+{ =2KBi£
>HirPviVuiotiY,(^t„-ti-Jtn-ti~l), (19) 

where 

t _ y 2(Z;+i ~Zj) . 
" r (ud.+udi+l)' 

letting the initial time in the problem be zero; and summing to 
the present time, tn, for each spacial step of the integration of 
equation (5). The evaluation of the Basset force represents no 
technical difficulty, though it is costly in computer time-
slowing the solution by approximately a factor of two. 

Calculational Results 

A diverging channel is necessary to stabilize the location of 
the shock in these calculations, because the problem is invi-
scid except for droplet drag. The converging-diverging nozzle 
from which the diverging sections are taken has a stagnation 
pressure and mass-flow-rate ratio of 360 psia and 14 percent, 
respectively. 

Figure 3 shows profiles for the portion of the diverging 
section where an isentropic homogeneous expansion produces 
velocities above the two-phase choking velocity but below the 
vapor sonic velocity. The maximum isentropic velocity oc­
curring in this section would be approximately Mach 2 relative 
to the homogeneous-mixture choking velocity and Mach 0.7 
relative to the vapor sonic velocity. Figure 4 shows profiles 
for the portion of the diverging section where the isentropic 
velocity occurring in this section would be approximately 
Mach 1.2 relative to the vapor sonic velocity and Mach 3.3 
relative to the two-phase choking velocity. The reference 
values for velocity and area in a and b of Figs. 3 and 4 are 
associated with the exit conditions of the nozzle shown in Fig. 
4(a), this velocity being the isentropic velocity of the mixture. 
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Fig. 3 Two-phase shocks for various droplet sizes at flow velocities 
above the two-phase choking velocity but below the vapor sonic 
velocity: 

(a) area profile 
(b) velocity prof He 
(c) pressure profile 

A shock is induced in the nozzle by specifying a subsonic 
exit boundary condition [4] that requires selection of the exit 
vapor velocity. A normal shock can thus form, provided the 
Rankine-Hugoniot conditions for a normal shock have been 
met or exceeded. It should be noted that these calculations do 
not allow direct comparison of shock phenomena having the 
exact same initial conditions entering the shock. The shock 
and postshock relaxation regions in two-phase flow are 
generally wide enough to affect the result because of the area 
change in the diverging nozzle. 

Figure 3 shows the nozzle profile (a), velocity profile (b), 
and resultant pressure profile (c) for the liquid and vapor 
phases for four different droplet sizes. The vapor velocity at 
the exit was the same for all four calculations. For the l-/mi-
dia droplet, a sharp discontinuity in velocity is seen, in­
dicating shock-like behavior. As the droplet diameter was 
increased to first 2, then 5, and finally 10/tm, the flow disturb­
ances became increasingly gradual. 

Figure 4 shows the results for a shock occurring at a 
velocity higher than the vapor choking velocity. The nozzle 
profile and the pressure and velocity profiles are shown for 
three different droplet sizes. In contrast to the case in Fig. 3, 
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Length ratio, l/l 

Fig. 4 Two-phase shocks for various droplet sizes at flow velocities 
that are supersonic relative to the vapor: 

(a) area profile 
(b) velocity prof ile 
(c) pressure profile 

the vapor velocity continues to increase until the shock occurs. 
The result is a sharp discontinuity for all droplet sizes. 

In all calculations shown, the steady-state drag force is 
predominant. The Basset force is typically less than 10 percent 
of the total force of the droplet except through the shock 
region where it briefly reaches as much as 60 percent of the 
total forces on the droplet. The buoyant force is ap­
proximately 5 percent of the total forces for the results shown 
in Fig. 3 and 1 percent for the results of Fig. 4. The force 
associated with the virtual-mass effect is at least an order-of-
magnitude smaller than the buoyant force. 

Discussion 

For the flow conditions in the examples used here, con­
tinuum behavior appears to be approached with droplets of 1 
to 2 ;um in diameter. In the low-velocity cases, where the fluid 
was above the mixture choking velocity and below the vapor 
sonic velocity, the abruptness of the shock or flow discon­
tinuity is strongly dependent upon droplet size. Discontinuous 
behavior occurs at velocities below the vapor choking 
velocity. However, when the droplets become large enough to 

render continuum behavior a poor approximation, the in­
formation is carried upstream in the vapor so that the 
discontinuity is modified. When the vapor sonic velocity is 
exceeded, the shock does not "see" upstream and cannot be 
modified until it occurs, which is consistent with supersonic-
fluid behavior. In this case, the shock itself is not significantly 
affected by the size of the droplet except for modification of 
the relaxation region following the discontinuity. If the 
droplet size is greater than 2 Ltm and the flow is supersonic 
relative to the vapor, the relaxation region following the 
shock is very broad, compared to the lower velocity cases. 
This results from both the high velocity (great momentum and 
kinetic energy in the droplet field) and the large change in the 
vapor velocity across the discontinuity. 

It is notable that the buoyant force is more significant in the 
low velocity cases. This is a result of higher vapor density in 
the low-velocity than in the high-velocity cases. Though the 
buoyant force is small compared to the drag and Basset 
forces, it apparently should not be neglected, particularly in 
regions where vapor densities are high. 

Summary 

We have presented calculations showing the dependence of 
two-phase shock behavior on droplet size. For the examples 
given, continuum behavior of the mixture appears to be 
approached for droplets of 1 and 2 /xm in diameter, even 
through a normal shock wave. There is a significant dif­
ference in the effect of droplet size on discontinuities oc­
curring in flows that are supersonic relative to the vapor and 
in those that are subsonic relative to the vapor but supersonic 
relative to the choking velocity of the mixture. In the droplet-
momentum equation, we have included the steady-state drag 
force, the Basset force, the virtual-mass effect, and the 
buoyant force. Except in the very limited region of the shock 
wave, the steady-state drag force is dominant. To properly 
predict the significance of flow discontinuities in two-phase 
mixtures where flow velocities exceed the two-phase mixture 
choking velocity, we must include knowledge of the droplet 
size. 
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Predicted and Measured Pressure 
Drop in Parallel Plate Rotary 
Regenerators 
The flow in the passages of parallel plate rotary heat exchangers or regenerators is 
laminar and fully developed. Laminar flow theory should allow an accurate 
prediction of heat and mass transfer and pressure drop. Previously measured values 
of pressure drop have been 20 percent higher than predicted. Pressure drop is 
predicted here by considering the passage cross section rectangular and correcting 
for flow acceleration, property variations, and inlet and outlet pressure drop. The 
pressure drops measured on a parallel plate sensible heat regenerator were within 3 
percent of theory and on a prototype parallel plate total heat regenerator within 4 
percent. 

1 Introduction 

In regenerators or regenerative heat and mass exchangers, 
heat and any number of chemical components are transferred 
from one fluid stream to a porous matrix, and then from the 
porous matrix to other fluid streams. Many authors have 
contributed to the theory of heat and mass transfer in 
regenerators and the literature is reviewed elsewhere [1]. 

A variety of passage shapes and seals have been used in 
rotary regenerators. The parallel plate rotary regenerators 
manufactured in Australia have advantages for air con­
ditioning applications [2]. Flow and pressure drop tests on a 
sensible and a total heat regenerator of this type are described 
here. 

The frame of these regenerators is usually made of 
aluminium (Fig. 1). Channel section spokes are fastened to 
either side of a hollow hub mounted on a drive shaft. The 
spokes are filled with rectangular spacers from the hub to an 
outer cover cylinder of aluminium sheet. The matrix is made 
by winding a reel of film or woven cloth spirally over the 
spacers as they are inserted in the spokes. The film used for 
the sensible heat regenerator tested was 76 /t m thick 
polyethylene terephthalate (Mylar). The total heat regenerator 
was made using 89 JJLVO. thick cloth woven from polyethylene 
terephthalate fibre threads (Terylene) and was impregnated 
with a small amount of lithium chloride solution. The overall 
dimensions of the regenerator rotors tested were outer cover 
diameter 1.273 m, hub diameter 457 mm and depth between 
faces 135 mm. 

The seals between the rotor and housing are all clearance 
seals. They are designated axial, radial, and tangential 
depending on their orientation to the axis of the rotor (Fig. 1). 
The axial and radial seals prevent leakage from the upper to 
the lower regenerator flow streams. This leakage was between 
3 and 5 percent of the upper flow stream for the tests. The 
tangential seal prevents part of a flow stream from leaking 
past the regenerator matrix, between the rotor circumference 

Contributed by the Fluids Engineering Division for publication in the 
JOURNAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids 
Engineering Division, March 19, 1979. 
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Fig. 1 Two stream counter)low air conditioning regenerator 

and housing. For the upper tangential seal, this leakage was 
between 3 and 8 percent of the upper flow stream for the tests. 

A sensible heat regenerator matrix passage half way be­
tween the hub and outer cover is shown with dimensions in 
Fig. 2. The passage cross sections are isosceles trapezoids with 
the axis of symmetry intersecting the rotor axis. In ap­
plications of these regenerators, the passage Reynolds number 
is always less than 1000. For the tests the Reynolds number 
was always less than 400. The flow in the passages is thus 
laminar and also fully developed at exit. Since the mean 
aspect ratio w/b of the passages is 121, they may be con­
sidered as parallel plates for many design purposes. For the 
purpose of these tests the cross sections will be considered 
rectangular. 

Dunkle and Maclaine-Cross [2] reported test results on a 
1.98 m diameter sensible heat regenerator similar to the one 
previously described. For a flow of 4.11 mVs, they measured 
a pressure drop of 119 Pa, 20 percent higher than they 
predicted. The improvement obtained here (section 4) was 
partly due to an improved theory (section 2) but mainly to an 
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Fig. 3 Assumed one dimensional flow through regenerator for 
calculating inlet and outlet pressure drop 

improved test rig and more careful experimental technique 
(section 3). 

2 Theory of Flow in Parallel Plate Regenerators 

2.1 Fully Developed Laminar Flow in Rectangular 
Passages. The pressure drop AP in the matrix passages for 
constant property, laminar flow, fully developed at exit, may 
be determined from 

A C R O S S SECTIONEO MATRIX 

O B S C U R E D BY R A D I A L 

BEARING SUPPORTS 

AP = 2f„ Re ixuL/Dh
2+Kpu2/2 

is the local Fanning friction factor for 
(1) 

where f„ is the local Fanning friction factor for fully 
developed flow and K is a flow development pressure drop 
coefficient. In the tests, the last full term contributed between 
2 and 5 percent of the total pressure drop. 

For rectangular passages/„ Re is given by [4, 5]. For Re > 
600, Beavers, et al. [6] have shown experimentally that K is a 
constant. For Re — 0, the creeping flow solution predicts that 
K ~ C/Re where C is a constant depending on the inlet 
conditions. For the Reynolds numbers and large aspect ratios 
encountered in parallel plate regenerators, it is satisfactory to 
use a constant value of K obtained for parallel plates. K = 
24/35=0.686 will be used here following Lundgren, et al. [7] 
but other authors have given values between 0.60 [6] and 0.85 
[8]. Finite difference solution of the Navier-Stokes equation 
[9] gives values close to the approximate theory of Lundgren, 
et al. [7] and allows the effect of low Reynolds number and 
plate thickness to be included. 

2.2 Variable Property Effects. The absolute pressure 
variation along a regenerator passage in air conditioning 
applications is less than 0.2 percent and in the experiments 
was always less than 0.1 percent. The effect of pressure 
variations on density and viscosity will have an entirely 
negligible effect on pressure drop. 

When heat was transferred in the experiments, the absolute 
temperature variation along the passage was up to 10 percent. 
The density and viscosity vary with temperature in the flow 
direction and normal to it. The right-hand side of equation (1) 

Fig. 4 Radial seal detail for estimating free flow area of passages 

may be corrected for these effects as described in the 
following two paragraphs. 

The viscosity and velocity in the first term should be 
evaluated for the bulk mean fluid temperature averaged in the 
flow direction through the matrix Tm. For counterflow 
regenerators Tm ~ (T2 + T3)/2 where T2 and T} are the 
temperatures evaluated at the positions shown in Fig. 3. The 
density and velocity in the second term should be evaluated at 
the fluid inlet temperature T2. The fluid acceleration on 
heating or deceleration on cooling may be accounted for by 
adding a third term p,„ u„,2 (T3-T2)/T,„, which may be 
derived using conservation of momentum and the ideal gas 
law. For the tests, this term's magnitude was between 0 and 
0.7 percent of the matrix pressure drop. 

The variation of density and viscosity normal to the flow 
direction may be corrected for following Kays and Perkins 
[10]. For gases, they multiplied the local friction factor by 
(Tw/Tb)'" where Tw is the local wall absolute temperature, Tb 
is the local bulk fluid absolute temperature and m = 1.00 for 
heating and m = 0.81 for cooling. The average value in the 
flow direction x of this correction may be obtained as follows: 

Nomenclature • 

a = matrix plate thickness (m) ^ 
Ac = effective minimum free BCDE 

flow area of matrix 
passages for one fluid 
stream (m2) 

Ad = cross-sectional area of 
regenerator ducts (m2) 

As = area of gap in clearance 
seals (m2) 

An = unobscured cross sec­
tional area of matrix, 
passages and spokes (m2) 

Dh 

f = 

f = 
J CO 

matrix plate spacing (m) 
regenerator dimensions 
defined in Fig. 4(m) 
clearance seal discharge 
coefficient (dimensionless) 
hydraulic diameter (= 
26/(1 + b/w) for rec­
tangular passages) 
APDh/(2pu2L) Fanning 
friction factor (dimen­
sionless). 
local fanning friction 

K = 

m = 

factor for fully developed 
flow (dimensionless) 
pressure drop coefficient 
for entrance effect inside 
passage (dimensionless) 
passage length in flow 
direction (m) 
coefficient in equation (3) 
(dimensionless) 
static pressure (N/m2) 
seal leakage volume flow 
rate (m3 /s) 
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Lot-77/ T = Lo\1 + ~fT-) T (Rear««> 

[\+m —^——- ) — (Bionomial expansion, — < 2 percent in experiments) 

[X=L(, mL dTb\dx / . L dTb\ 
= L=o V + W ~dx ) T \ p a s s a g e e n e r g y conservation [1], T„ - Tb = — - ^ ) 

m , T3 

= 1 + In — 
(integrating) 

= 1 + • 
m T,-T0 

A T„, 
In -=r- — ~^-=—- with error less than 0.04 percent for experiments) 

This approximate average value may be used as a coefficient 
to correct the first term of equation (1). \m(Ti — T2)/AT,„ | 
was between 0 and 1 percent for the tests. 

Applying the above four corrections to equation (1) gives 
the following approximate equation for the matrix pressure 
drop with variable property effects 

P2-P3=0+m 
T3-T2 

AT,,, 
) /» Re 

^m^m'-' 

+K 
Piui , T3-T2 

+ —=;— Pm"» (2) 

When mass was transferred in the experiments the 
maximum difference in humidity ratio or moisture content 
was 0.01 kg water/kg dry air. The variation of density and 
viscosity in the flow direction resulting from this would be less 
than 0.6 and 0.2 percent, respectively. The viscosity and 
velocity in the first term of the right hand side of equation (1) 
should be evaluated for the bulk mean fluid absolute humidity 
averaged in the flow direction as for temperature above. The 
density and velocity in the second term should be evaluated at 
the fluid inlet absolute humidity. The effects of mass transfer 
on pressure drop through the acceleration correction, the 
variation of density and viscosity normal to the flow direction 
and distortion of the velocity profile [11] were each estimated 
to be less than 0.1 percent and were neglected. 

2.3 Inlet and Outlet Pressure Drop. In the tests, the mean 
static pressure was measured as the average of four wall 
tappings [14] at positions 1 and 4. For each of the two streams 
through the regenerator, positions 1 and 4 were 308 mm 
upstream and downstream respectively of the regenerator 
housing. The assumed flow and velocity profiles through the 
test regenerator are shown schematically in Fig. 3. 

The inlet flow is assumed to be a frictionless contraction 
from the duct cross sectional area Ad at position 1 to the 
regenerator free flow area Ac at position 2. By Bernoulli's 
equation and continuity at the inlet 

~ ^ 2 = 
Pl^i 

('-(•£)') » 
The flow leaves the passage at position 3 and is assumed 

to expand abruptly from the free flow area Ac to an area A4 
at the downstream static pressure measuring position 4. A4 is 
the cross section area of the matrix, passages and spacers for 
each stream which is not obscured by the radial seal. By 
conservation of momentum and continuity at the outlet 
assuming a parabolic velocity profile at position 3 and a 
uniform velocity at position 4 as shown in Fig. 3. 

P 3 - P 4 = ^ ( 2 ( 4 L ) 2 - 2 . 4 4 ^ (4) 

The measured static pressure difference between positions 1 
and 4 may be predicted using equations (2, 3, 4) since P{ - P4 
= P, - P2 + P2 - P3 + P3 - PA. The inlet and exit 
pressure drop may be increased by blockage due to fraying of 
the edges of the cloth and other effects [3]. 

Kays and London [5] calculate the pressure drop across 
heat exchangers using entrance and exit total pressure loss 
coefficients Kc and Ke. Equations (2), (3) imply that Kc = K 
= 0.686 but [5, Fig. 5-3] gives Kc = 0.55 for the sensible heat 
regenerator tests where a = Ac/Ad = 0.796. This difference 
in entrance loss coefficient Kc results from different 
assumptions about the inlet flow pattern. The tests (section 4) 
were not sufficiently accurate to distinguish between the two 
values of Kc but computer studies [9] suggest the present 
authors' assumptions are appropriate for high Ac/Ad. 
Equation (4) implies the same values of Ke as those given by 
[5, Fig. 5-3] if A4 is taken as an equivalent exit duct area. 

2.4 Estimation of the Effective Minimum Free Flow Area 
of the Passages Ac. The gap of width B between the matrix 
and radial bearing supports restricts the flow where the matrix 
is obscured by the support (Fig. 4). The actual flow at a given 
pressure drop is considerably less than would be estimated by 
assuming 2AC equal to the total cross sectional area of the 
matrix passages. The variation in the effective value of Ac 

-Nomenclature (cont.)-

Re = puDh/jx Reynolds number 
(dimensionless) 

T = absolute temperature (K) 
Tb = local bulk fluid absolute 

temperature (K) 
T„ = local absolute temperature 

at the passage wall (K) 
u = mean velocity in matrix 

passages (m/s) 
w = width of matrix passages 

(m) 

x = distance in the fluid flow 
direction (m) 

AP = pressure drop in matrix 
passages for constant 
property flow at Tm 
(N/m2) 

APS = pressure drop across 
clearance seal (N/m2) 

A = number of heat transfer 
units for matrix stream 
with heat transfer alone 
[3] or appropriate 

dimensionless length for 
heat and mass transfer [1] 
(dimensionless) 

ft. = dynamic viscosity 
(Ns/m2) 

p = density (kg/m3) 

Subscript m denotes a quantity 
evaluated for the bulk mean fluid 
temperature or state averaged in the 
flow direction through the matrix. 
Subscripts, 1, 2, 3, and 4 indicate the 
measuring positions shown in Fig. 3. 
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Fig. 5 Clearance seal discharge coefficients Cd 

with spoke position is certainly less than one percent, as 
variation in pressure drop with spoke position was only just 
detectable at low flow and rotational speed. 

By considering the average of two limiting cases of a 
simplified flow pattern, it was estimated that (3.4 BC + 
DE)b/(a + b) should be added to the unobscured passage 
cross-sectional area for a stream to calculate the minimum 
free flow area of the passage Ac. This addition was four 
percent of Ac for the regenerators tested. The limiting cases 
suggest an error in the addition of ± 30 percent so the 
corresponding error in A c is ± 1.2 percent. 

3 Measurements on Parallel Plate Regenerators 

3.1 Measurement of Matrix Plate Spacing. The matrix 
plate thickness a was measured on a folded sample of the film 
or woven cloth retained during manufacture of the 
regenerator. Two radii on opposite sides of a rotor diameter 
were selected with approximately half the matrix area at 
smaller radii and half at greater. At each such radius, fifty 
passages were counted out radially every tenth one being 
marked by slipping a strip of paper 20 mm x 160 mm into the 
matrix so it protruded on either side. The counting was 
checked. The overall thickness of fifty passages and fifty one 
matrix plates was measured using vernier calipers at each 
radius on either side of the wheel. The thickness of fifty one 
matrix plates was subtracted and the results divided by fifty. 
The four results were averaged to give b. The measured values 
of b, 882 ± 3 ^m for the sensible heat regenerator and 869 ± 
3 ixm for the total heat regenerator were significantly less than 
the nominal value 914 /*m. 

3.2 Measurement of Clearance Seal Leakage. Dunkle and 
Maclaine-Cross [2] recommended that seal leakage flow Qs be 
calculated from the formula 

Qs = CdAs(2&Ps/PyA (5) 
using the mean value of discharge coefficient Cd = 0.65 
obtained by Harper [15]. Harper plotted measured discharge 
coefficients Cd against clearance. His values varied between 
0.56 and 0.70. No details of geometry or Reynolds number 
were given. 

Seal leakage was measured for the radial and axial seals and 
two types of tangential seals on a parallel plate sensible heat 
regenerator (section 1, Fig. 1). The speed of the rotor ap­
peared to have no effect, up to 2 rad/s, on the mean value of 
Cd for a revolution. On slow rotation fluctuations in Cd were 
less than 1 percent. The measured discharge coefficients are 
shown in Fig. 5. The radial and axial seal discharge coefficient 
in Fig. 5 was measured on the total flow through two axial 
and two radial seals. In applying these results it is therefore 
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recommended that half the cross sectional area of the axial 
seals be combined with each radial seal and that the axial seal 
leakage be otherwise neglected. After the initial measurements 
were made the tangential seals were modified to reduce 
leakage by riveting a 9.5 mm x 9.5 mm aluminium extrusion 
to the housing circumference with a minimum clearance of 1.6 
mm from the upstream wheel face. This modification in­
troduced a sharp 90 deg bend in the leakage flow path which 
reduced the discharge coefficients. Difficulty in measuring 
seal dimensions' reduces the value of these coefficients for 
predicting leakage in other regenerators. Since un­
derestimating leakage is more serious than overestimating it, 
Cd = 0.70 is recommended for design purposes. 

3.3 Reduction of Measurements to Dimensionless Form. 
A B.S. 848 cone inlet nozzle [12], calibrated with Pitot-static 
tube traverses [13], was used to measure the upper flow 
stream at the test rig inlet. After passing through the 
regenerator the upper flow stream was turned 180 deg to pass 
through the lower half of the regenerator and then the fan. 
The upper and lower duct cross sectional area upstream and 
downstream of the regenerator, Ad, was constant. The matrix 
flows were obtained from the inlet nozzle flow and the seal 
leakage flows, which were calculated using equation (5) and 
the pressures measured upstream and downstream of the 
regenerator in the upper and lower duct. The calculated 
pressure drops at the regenerator inlet, P{ - P2, and outlet, 
•̂ 3 - 4̂> (section 2.3) were subtracted from the measured 
regenerator pressure drop, P, - P4, to give the passage 
pressure drop P2 - P3 for both the upper and lower flow 
stream. If equation (1) is written for the averaged bulk mean 
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fluid state for a flow stream, f„ Re 2 /J,,,, u,„ L/Dh
2 may be 

replaced by its value calculated from equation (2) to give 
2 

A P = ( / W 3 - ^ f 

»" m
2 ) / ( l+m 

AT,„ 
\+K 

Pmun 
(6) 

AP calculated from equation (6) is the measured matrix 
pressure drop with acceleration and variable property effects 
removed. The values of AP and um may now be plotted by 
calculating the dimensionless coordinates APDh

2/(2 fimumL) 
and Re„, Dh/(AL) using Mason and Monchick's [16] moist air 
viscosity data. 

Equation (1) may be divided by 2/J.,„ umL/Dh
2 to give 

&PDh
2 „ _ _.RemDh 

=/„ Re + K-
4L 

(7) 
2fimumL 

Equation (7) shows that, if the theory in section 2 agrees with 
the experiments, the dimensionless coordinates calculated 
from the measurements as described in the previous 
paragraph should lie on a straight line with intercept / „ Re on 
the ordinate and slope K. 

4 Pressure Drop Results and Discussion 

If the error in conical inlet discharge coefficient is assumed 
±2 percent, the errors in pressure measurement ±1 percent 
and other errors neglected, the error in measuring APD/t

2/(2 
Hmu,„L) is ±2.35 percent. These error bands are shown by 
the broken lines in Figs. 6, 7. 

Figure 6 shows the results of two series of measurements on 
the parallel plate sensible heat regenerator (section 1) in 
dimensionless form. Three flows were used for each series. 
The winter series was made with no heat or mass transfer and 
the unmodified tangential seals. The summer series was made 
with the modified seals and up to 30 K temperature difference 
between the regenerator inlets. No effect of rotational speed 
on the average value of the measurements was detected up to 2 
rad/s. 

Figure 7 shows the results of a single series of 
measurements on the parallel plate total heat regenerator 
(section 1). This series was made with no heat or mass transfer 
and the total heat rotor installed in the sensible heat 
regenerator housing. Although the nominal size of the rotors 
was the same, they were not interchangeable. The tangential 
seals were out of adjustment for these tests and no seal 
leakage measurements were made. The rotor was a 
manufacturer's prototype and a large proportion of the cloth 
plates were slack, which tends to increase the matrix flow. 
Broken fibres were projecting from the cloth into the passages 
tending to reduce the matrix flow. The deviation of ex­
periment from theory in Fig. 7 is consistent with a seal leakage 
greater than predicted and a matrix flow less than theory. 

Conclusion 

Within the ±2.35 percent experimental error, the pressure 
drop of parallel plate sensible heat regenerators has been 

shown consistent with equation (1) (section 2.1). This was 
possible because many precautions were taken and in par­
ticular: Approximate corrections were made for variable 
property effects (section 2.2), for inlet and outlet pressure 
drop (section 2.3) and to the minimum free flow area (section 
2.4); The matrix plate spacing b (section 3.1) and seal 
discharge coefficients section 3.2) were carefully measured. 

The pressure drop of parallel plate total heat regenerators 
(section 1.2) may be predicted using the theory described in 
this paper (sections 2, 3) within ± 4 percent. Further in­
vestigations could improve the accuracy of prediction for 
total heat regenerators. 
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Hydraulic Axial Thrust in 
Multistage Centrifugal Pumps 
An experimental and theoretical study is performed with a single stage pump. The 
influence of the flow rate, the axial displacement of the impeller, and annular seal 
clearances on the hydraulic axial thrust is investigated. Pressure distributions 
measured in the space between the impeller and the casing agree with those 
calculated by the Kurokawa-Toyokura method when the leakage flow is inward in 
the space. It is clarified that the method is sometimes not available for the outward 
leakage flow because of the large thickness of the boundary layer in the space. A 
computer program for calculating the axial thrust in multistage centrifugal pumps is 
developed based on the method and experimental results. Axial thrusts measured in 
prototype multistage pumps agree with the calculation. 

Introduction 

Centrifugal pumps have become larger in size and higher in 
head, and the hydraulic axial thrust acting on impellers has 
increased considerably. On the other hand, it has been proved 
experimentally that the conventional method of calculating 
the axial thrust is not adequate [1,2]. 

Figure 1 shows the pressure distribution around an impeller 
in multistage centrifugal pumps. In the multistage pumps 
without balancing holes, the direction of leakage flow in the 
front space between the impeller and the casing wall is op­
posite to that in the back space. 

When a control surface is considered around the impeller, 
the estimation of the axial thrust is simplified to the following 
two problems: 1 The estimation of the axial momentum 
difference between the inlet and the outlet flow crossing the 
control surface. 2 The estimation of the pressure 
distribution in the space between the impeller and the casing 
walls. 

The axial momentum change described in the problem 1 is 
small compared with the thrust caused by the pressure 
distribution. Therefore, for calculation of the axial 
momentum change, an assumption that the inlet flow is 
uniform and the outlet flow is radial would yield results of 
acceptable accuracy. 

In order to estimate the pressure distribution, it is necessary 
to know the value of the pressure and the fluid angular 
velocity in the space at the impeller outlet diameter as well as 
the pressure change in the space along the radius. The con­
ventional method of estimation of the pressure change is 
based on an assumption that the fluid in the space rotates at 
half the angular velocity of the impeller. A. Verba and G. 
Sebestyen [ 1 ] proved that the axial thrust calculated on this 
assumption was considerably smaller than that measured in a 
multistage pump. U. Domm and H. Zilling [2] proposed a 
method of calculating the pressure change, considering the 
influence of through-flow rate. Recently new methods were 
proposed to analyze the flow in the space in consideration of 

BACK SPACE 

FRONT SPACE 

FRONT WEARING R BACK WEARING RING 

IMPELLER 

Fig. 1 Pressure distribution around an impeller 

Contributed by the Fluids Engineering Division for publication in the 
JOURNAL OF FLUIDS ENGINEERING. Manuscript received by the Fluids 

Engineering Division, March 31, 1979. 

Fig. 2 Test pump 

the velocity distributions in the boundary layers and a 
potential core in the space [3, 4, 5]. 

On the other hand, there have been few studies on the 
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Fig. 3 Test impeller A 

boundary values of the pressure and the fluid velocity in the 
space, especially in the region of low flow rates. 

U. Domm and H. Zilling investigated experimentally the 
influence of the impeller axial position on the axial thrust with 
a single stage pump [2]. A. Verba and G. Sebestyen at­
tributed the difference between the measurement and the 
calculation to the impeller axial displacement. However, the 
relation between the pressure distribution and the impeller 
axial displacement has not been studied. 

This paper deals with the axial thrust in multistage cen­
trifugal pumps with vaned diffusers. Pressure distributions 
around impellers are measured under several conditions of 
flow rate, impeller axial displacement, and wearing ring 
clearances. The pressure and the fluid angular velocity at the 
impeller outlet diameter as well as the pressure change in the 
space are investigated. 

Test Pumps and Method of Experiments 

Test Pumps. The test pump A is shown in Figs. 2 and 3. 
Table 1 shows the performance of the test pumps A and B. In 
order to measure the pressure distribution in the space be­
tween the impeller and the casing walls, four pressure taps 
were fitted on each pitch circle shown in Fig. 3. 

Table 1 Performance of test pumps 
Speed Flow Head n, 

Pumps rpm mVmin m (m,m3/min, rpm) 

A 
B 

3000 
3000 

2.25 
2.70 

74.8 
66.3 

177 
212 

Method of Experiments. Experiments were carried out 
under several conditions of the flow rate, axial displacement 
of the impeller, and annular clearances at the wearing rings. 
The axial spacing between the impeller and the casing walls 
changed with /, the axial displacement of the impeller against 
the diffuser. Transducers of strain gauge type were used for 
pressure measurements. Flow at the impeller outlet, at the 
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Fig. 4 Pressure distribution In the space between the impeller and the 
casing of the test pump A. Uncertainty: R ± 0.5 percent, *> ± 1.5 per­
cent, C p ± 0.5 percent, t/bz ± 5.2 percent, 2cf/df ± 3.2 percent, 
2cb/db ± 3.3 percent. 

diffuser inlet, and in the space was also investigated by means 
of an oil film technique. 

Experiments 

Experimental Results. Figs.4(a) and (ft) show the influence 
of the impeller axial displacement and the wearing ring 

A 
b, 

c 

cP 
Cpn 

CT 

Nomenclature 

= Boussinesq factor, Pa. s 
= impeller width at the outlet 

diameter, m 
= radial clearance at annular 

seals, m 
= p r e s s u r e c o e f f i c i e n t 

(=p/(Pu2
2)) 

= pressure coefficient ( = (p — 
A))/(P"22)) 

= th rus t coeff icient ( = 
T/{pSu2

2n) ) 

Gj-g 

d 
d, 
K 

n 
ns 

P 
Q, 

= thrust bearing load coef­
ficient (= Tb/(pSu2

2n) ) 
= diameter at annular seals, m 
= impeller outlet diameter, m 
= angular velocity coefficient 

( = &/«) 
= number of stages 
= specific speed defined in units 

m, mVmin, and rpm 
= pressure, Pa 
= leakage flow rate, m3 /s 

r 
R 

S 

s 

JT 
Th 

Tri 

= radius, m 
= dimensionless radius ( = 

2r/d2) 
= area difference ( = iridf — 

db
2)/4) 

= axial spacing between the 
impeller and the casing wall, 
m 

= axial thrust, N 
= load on the thrust bearing, N 
= axial thrust acting on a 

balancing device, N 
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clearances, respectively, on the pressure distribution in the 
spaces. 

The impeller axial displacement t had a great influence on 
the pressure distributions in both spaces, especially in the 
region of small flow coefficient, as shown in Fig. 4(a). When 
t was made negative in the region of small flow coefficient, 
the pressure coefficient Cp in the front space increased, and 
Cpin the back space decreased. This change had a great in­
fluence on the axial thrust. 

The influence of the wearing ring clearances was great, but 
did not depend much on the flow coefficient. When the front 
wearing ring clearance increased, Cp in the front space 
decreased considerably. On the other hand, Cp in the back 
space increased with the increase of the back wearing ring 
clearance. 

Figure 5 shows the axial thrust calculated from the pressure 
distributions. The axial momentum change of the flow 
through the impeller, though it was small, was added to the 
axial thrust. The impeller axial displacement of the value 
between ±0.14 caused the maximum thrust change of about 
40 percent of the thrust at the best efficiency point. The thrust 
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Fig. 6 Pressure coefficient In the space at the impeller outlet diameter 
of the test pump A. Uncertainty: Cpfo and Cpbo ± 0.5 percent, <p ± 1.5 
percent, t/bz ± 5.2 percent. 

curves intersected at a flow coefficient of about 0.08. The 
increase of the wearing ring clearances caused the thrust 
change of about 30 percent within the experimental range of 
clearance variation. The thrust curves were almost parallel. 

Influences of the Impeller Axial Displacement. Pressure 
coefficients in the spaces at the impeller outlet diameter were 
estimated by making extrapolations from the measurements 
of pressure distributions to the very location of the outlet. 
Figure 6 shows those boundary values. They did not change 
much with the impeller axial displacement. The result that the 
boundary values in the back space Cpbo were a little higher 
than those in the front space Cpfo could be explained as 
follows. The through-flow in the back space is outward and 
passes from the space to the impeller outlet through the 
clearance between the impeller tip and the cylindrical wall of 
the casing. 

Therefore, Cpb0 is a little higher than the pressure coeffi-

Tj = axial thrust acting on im­
pellers, N 

t = impeller axial displacement; 
displacement in the direction 
of the impeller eye is 
designated as positive, m 

H2 = peripheral velocity of im­
peller, m/s 

>m2 = radial component of fluid 
velocity at the impeller 
outlet, m/s 

0 

0 

0c 

X 
V 

P 
<P 

= fluid angular velocity at an 
arbitrary radius in the space, 
rad/s 

= fluid angular velocity 
coefficient ( =0/w) 

= equivalent angular velocity of 
fluid in the space, rad/s 

= friction coefficient 
= kinematic viscosity, m2/s 
= density, kg/m3 

= flow coefficient (= vml/u2) 

co = angular velocity of rotating 
parts, rad/s 

Subscripts 
b = in the space between the 

impeller back shroud and the 
casing wall 

/ = in the space between the 
impeller front shroud and the 
casing wall 

o = at the impeller outlet 
diameter in the space 
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cient at the impeller outlet. The inward through-flow in the 
front space has the opposite effect. 

Pressure coefficients at the impeller outlet at the flow coef­
ficient of 0.095 were calculated on an assumption that the im­
peller hydraulic efficiency was 95 percent. The pressure coef­
ficients calculated with the slip factors proposed by Stodola 
and by Wiesner [6] were 0.386 and 0.391, respect­
ively. These coefficients were a little higher than the coeffi­
cients Cpfo and Cpb0 shown in Fig. 6. 

Figure 7 shows the fluid angular velocity coefficients K 
calculated from the pressure distribution on the following 
assumptions. 

1 The fluid contained in the space rotates as a solid body 
at an angular velocity Ku. 

2 The pressure distribution for the solid body rotation 

P(,r)=pa-- p(r2
2- •r^K2^2 

yields a force to the impeller, which is equal to the force 
calculated from the actual pressure distribution. 

The angular velocity coefficients were greatly influenced by 
the impeller axial displacement in the region of small flow 
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certainty: Cpf0 and Cpb0 ± 0.5 percent, K, and Kb ±1.3 percent, «J ± 
1.5 percent, 2c,./d/ ± 3.2 percent, 2cb /db ± 3.3 percent. 

coefficient. With the increase of t/b2, the coefficient in the 
front space Kf increased, but Kb decreased. Therefore, a great 
increase of the axial thrust was caused by the increase of t/b2. 

It turned out from visualization experiment by means of the 
oil film technique that there existed a reverse flow from the 
diffuser when t/b2 was negative and the flow rate was small. 
This is likely to be the cause of small values of Kf in that 
region. 

Influences of Wearing Ring Clearances. Fig. 8 shows the in­
fluences of the wearing ring clearances on the pressure coeffi­
cients Cpfo and Cpb0, and on the angular velocity coefficients 
Kf and if;,. 

Reduction of Cpfo with increasing the front wearing ring 
clearance would be explained by the behavior of the through 
flow in the front space. The rate of inward through-flow 
naturally increases as the clearance is widened. This in turn 
helps to reduce the pressure at the impeller outlet. An increase 
in through-flow rate also causes an increase of loss in the 
clearance between the impeller tip and the cylindrical wall of 
the casing. 

The coefficient Cpb0 did not depend on the back wearing 
ring clearance. 

Increase of Kf with increasing the front wearing ring 
clearance would also be explained by the behavior of the 
through-flow in the front space. As stated above, the rate of 
inward through-flow increases as the clearance is widened. 
This causes the increase of the angular momentum carried in­
to the front space. 

Reduction of Kb brought by the increase of the back wear­
ing ring clearance is the result of increased outward through-
flow which carries the angular momentum out of the back 
space. 

Comparison Between Calculation and Measurement of the 
Pressure Change in the Space. The pressure change measured 
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Fig. 9 Pressure change in the space between the impeller and the 
casing. Uncertainty: CpD (measured) ± 1.0 percent, R ± 0.5 percent, *p 
± 1.5 percent. 

Fig. 9(b) Test pump B 

in the spaces were compared with that calculated by the 
following two methods, as shown in Figs. 9(a) and (b). One 
method was based on equation (1) presented by U. Domm and 
H. Zilling[2]. 

dp = 

ir\<ar2 

['-(I + 
8As 0 

pX/ - 3 co 

21 
r 

1 + 
SirAs 

dr 

pQi 

(1) 

dp = pr01dr 

The friction coefficient X was calculated with equation (2) 
proposed by Y. Yamada [7] for calculation of the torque 
resistance coefficient for the flow between rotating coaxial 
cylinders. 

where 

X = 0.2437?,-0-24 

sroi 

v 

(2) 

R,, 

Equation (2) was substituted into equation (1), and the 
Boussinesq factor A was neglected. The result was rewritten 
in the dimensionless form, as shown in equation (3). 

d$=[ 0.191/?u0-o-24/?-1-7«(2l8-l) 2/3 21) 
R) 

dR 

dCpD=R$2dR 
(3) 

where 

sdju , „ Qi 
l c u O • 

The boundary values of the pressure and the angular velocity, 

and the leakage flow rate, which were required to perform the 
calculation, were given by the experimental results. The values 
of CpD calculated by equation (3) were considerably small 
compared with the measurements, as shown in Fig. 9. 

The pressure change in the spaces was also calculated by the 
method proposed by J. Kurokawa and T. Toyokura [4] . In 
the front space, the calculated CpD agreed well with the 
measurements, as shown in Fig. 9. However, this method was 
not adequate to calculate the pressure change in the back 
space with the outward through-flow because of the large 
thickness of the boundary layer on the casing wall. 

Calculation of the Axial Thrust in Multistage Pumps 

Axial Thrust in Multistage Centrifugal Pumps. Multistage 
centrifugal pumps without balancing holes are usually equip­
ped with a balancing drum or disk and a thrust bearing. 
Figure 10 shows a multistage centrifugal pump equipped with 
a balancing drum. The thrust bearing must bear the residual 
axial thrust Tb expressed by equation (4). 

Tb = Tt-Td (4) 

The bearing capacity is usually 10 to 20 percent of the impeller 
axial thrust Tt. Therefore the accurate estimation of the axial 
thrust is necessary to keep the residual thrust within the bear­
ing capacity. 

Calculation of the Axial Thrust. A method for calculation 
of the axial thrust in multistage centrifugal pumps was 
developed. The impeller axial displacement and annular seal 
clearances were treated as variable quantities in this method. 
The outline of the method is explained as follows. 

1 In the front space of each impeller and the back space of 
the last stage one, the pressure distribution is calculated by the 
Kurokawa-Toyokura method with the boundary values based 
on the experimental results. 

2 In the back space of each stage except the last one, the 
pressure distribution is calculated based on the experimental 
results. 

3 The pressure distribution on the balancing drum is 
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Fig. 10 Prototype multistage centrifugal pump 
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Fig. 11 Axial load on thrust bearings of prototype multistage pumps. 
Uncertainty: CTB (measured) ± 1.7 percent,CrB (calculated) ± 6.3 
percent, <o ± 1.5 percent. 

calculated on the assumption that the fluid rotates at half the 
angular velocity of the rotor. 

4 The leakage flow rate through the annular seal 
clearances is calculated by using the friction coefficient pro­
posed by Y. Yamada [8] and assuming the inlet loss coeffi­
cient of 0.5 and the outlet loss coefficient of 1.0. 

5 The pressure distribution between the impeller and the 
casing walls is calculated iteratively until the calculated 
leakage flow rate agrees with that assumed previously. 

A computer program was developed based on the study. 

Axial Thrust in Prototype Pumps. Loads acting on the 
thrust bearings of the three prototype pumps E, F, and G were 
measured and compared with the calculation. The calculation 
agreed well with the measurements, as shown in Fig. 11. 

Conclusions 
An experimental and theoretical study was performed to in­

vestigate the hydraulic axial thrust in multistage centrifugal 
pumps. The following conclusions are deduced. 

1 The pressure at the impeller outlet diameter in the space 
between the impeller and the casing walls was not influenced 
much by the impeller axial displacement. When the impeller 
was moved backward, the fluid angular velocity in the front 
space decreased considerably, but on the contrary the angular 
velocity in the back space increased. 

2 The increase of the front wearing ring clearance reduced 
the pressure at the impeller outlet diameter and increased the 
fluid angular velocity in the front space. The increase of the 
back wearing ring clearance reduced the angular velocity in 
the back space. 

3 In the front space, the pressure distribution calculated 
by the Kurokawa-Toyokura method agreed well with the 
measurements. This method was not adequate for the calcula­
tion of pressure distribution in the back space where the 
through-flow was outward. 

4 A computer program for calculating the axial thrust in 
multistage centrifugal pumps was developed. Axial thrust 
measured in prototype pumps agreed well with the calcula­
tion. 

Acknowledgments 

The authors wish to express their gratitude to Messrs. K. 
Kamata and K. Komatsu of Tsuchiura Works, Hitachi, Ltd. 
for their valuable advice. 

References 
1 Verba, A., and Sebestyen, G., "Contribution to the Calculation of Axial 

Thrust of Multistage Pumps," Preprint for the IAHR Symposium "Pumps in 
Power Stations, "Braunschweig, 1966, pp. J35-J42. 

2 Domm, U., and Zilling, H., "Axial Thrust in Centrifugal Pumps," 
Preprint for the IAHR Symposium "Pumps in Power Stations," Braun­
schweig, 1966, pp. J23-J34. 

3 Altmann, D., "Contribution to Calculating the Turbulent Flow in the 
Axial Gap Between Impeller and Casing of Centrifugal Pumps," Proceedings 
of 4th Conference on Fluid Machinery, Budapest, 1972, pp. 37-50. 

4 Kurokawa, J., and Toyokura, T., "Study on Axial Thrust of Radial Flow 
Turbomachinery,'' Proceedings of the Second International JSME Symposium 
Fluid Machinery andFluidics, Tokyo, Vol. 2, Sept. 1972, pp. 31-40. 

5 Senoo, Y., and Hayami, H., "An Analysis on the Flow in a Casing In­
duced by a Rotating Disk Using a Four-Layer Flow Model," ASME JOURNAL 
OF FLUIDS ENGINEERING, Vol. 98, No. 2, June 1976, pp. 192-198. 

6 Wiesner, F. J., "A Review of Slip Factors for Centrifugal Impellers," 
ASME Journal of Engineering for Power, Vol. 89, No. 4, Oct. 1967, pp. 
558-572. 

7 Yamada, Y., "Torque Resistance of a Flow Between Rotating Co-Axial 
Cylinders Having Axial Flow," Bulletin of The Japan Society of Mechanical 
Engineers, Vol. 5, No. 20, Nov. 1962, pp. 634-642. 

8 Yamada, Y., "Resistance of a Flow Through an Annulus with an Inner 
Rotating Cylinder," Bulletin of The Japan Society of Mechanical Engineers, 
Vol. 5, No. 18, May 1962, pp. 302-310. 

Journal of Fluids Engineering March 1980, Vol. 102/69 

Downloaded 02 Jun 2010 to 171.66.16.103. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



D. Rockwell 
Professor. 

Mem.ASME 

A. Sehachenmann1 

Visiting Assistant Professor. 
Assoc. Mem.ASME 

Department of Mechanical 
Engineering and Mechanics, 

Lehigh University, 
Bethlehem, Pa. 18015 

A Quasi-Standing-Wawe 
Phenomenon Due to Oscillating 
Internal Flow 
The objective of this investigation is to characterize a quasi-standing-wave pattern 
having a wavelength two orders of magnitude smaller than the corresponding 
acoustic wavelength, and relate it to the presence of: a) a downstream travelling 
wave due to vortical structures generated in a free shear layer, and b) downstream 
and upstream propagating acoustic waves. In this experiment, the vortical struc­
tures were generated by flow past an axisymmetric cavity and their influence ex­
tended downstream through the exhaust pipe. The amplitudes of the acoustic waves 
were associated with Helmholtz resonance of the upstream settling chamber. A 
linear theory models well the measured amplitude and phase distributions of the 
fluctuating velocity in the core flow. As system resonance is approached, the ratio 
of vortex wave amplitude to acoustic wave amplitude decreases. The consequence is 
an increase in the magnitude and gradient of the phase change across the node, or 
amplitude minimum, of the resultant standing-wave pattern. In addition, the peak-
to-peak amplitude of the quasi-standing-wave increases. A variety of internal (and 
external) flow systems, including unsteady phenomena in wind tunnels, may be 
subject to this flow mechanism when the frequency of coherent vortex formation in 
the test section lies near the Helmholtz resonance frequency of the upstream settling 
(orplenum) chamber. 

Introduction 
Many internal flow systems include complex duct-settling 

or plenum chamber arrangements upstream/downstream of 
the region of primary interest (e.g. the test section). Aside 
from lumped parameter analysis of the gross system behavior, 
little attention has been given to the manner in which 
resonance of these settling chambers influences the detailed 
flow dynamics throughout the entire system. Yet, the results 
of several recent investigations [1, 2, 3, 4, 6] strongly suggest 
that formation of coherent structures in the presence of a high 
intensity acoustic field, usually associated with some sort of 
resonant condition, can produce a quasi-standing-wave 
behavior. 

In experiments aimed towards determining the acoustic 
reflection coefficient at a sudden expansion, Ronneberger [1] 
detected peaks and valleys in the streamwise distribution of 
fluctuating pressure, which he hypothesized to be associated 
with the formation of vortices downstream of the sudden 
expansion. The peak-to-peak amplitude of these distributions 
was enhanced by increasing Mach number (M) and decreasing 
frequency (/) of forcing by the upstream loudspeaker. For the 
case of a free jet excited by sound, Pfizenmaier [2] extensively 
measured fluctuating pressure and velocity distributions, 
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which had shapes similar to those of Ronneberger; in ad­
dition, some phase data were acquired but their interpretation 
was complicated by the measurement method. By superim­
posing downstream travelling instability and sound waves, he 
modelled several features of the streamwise distributions of 
amplitude.2 In a comprehensive study of flow through a 
Helmholtz resonator, Morel [3] mentions detection of a 
standing-wave-like pattern along the centerline of the 
resonator, but no corresponding data are given. For the 
situation of a relatively high Mach number (0.60<M<0.95) 
jet impinging on a wall, Schlieren photos of Wagner [4] 
exhibit a stationary wave pattern, which he hypothesized to be 
due to downstream travelling vortices and acoustic distur­
bances propagating upstream from the stagnation point at 
impingement - no data were reported for the fluctuating 
velocity or pressure along the jet. In the case of Parker-mode-
resonance [5] generated by flow past a flat plate, the 
measurements of Morkovin et al. [6] show peaks and valleys 
in the streamwise distribution of fluctuation velocity. This 
pattern was related to the downstream propagation of vortices 
shed from the leading edge of the plate. For this variety of 
internal and external flows, the overall nature of the flow 
unsteadiness, and the time mean character of the flow as well, 
can be related to the flow mechanisms producing these quasi-

The authors wish to thank a reviewer, who pointed out a paper of Davis 
[19]. He reports on experiments and results very similar to those of Ron­
neberger, and on modelling the corresponding wave pattern in the spirit of 
Pfizenmaier [2]. 
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sinusoidal patterns of fluctuating pressure and velocity. 
Indeed, the intimate interaction between vortex formation 
and pressure waves incident upon the sensitive region of the 
shear layer near separation is of central importance for 
maintenance of self-sustaining oscillations as described 
herein, and in noise generation and mixing as well (Rockwell 
and Naudascher [7, 8], Morkovin and Paranjape [9], Bechert 
and Pfizenmaier [10]). 

To date, the stationary wave patterns described above have 
been typically part of an investigation focussing on other 
features of the flow field. With the exception of the un-
confined jet study of Pfizenmaier [2], which involved only 
downstream propagating acoustic and instability waves, these 
patterns have not been pursued in sufficient detail to describe 
their underlying mechanics. In order to attain an un­
derstanding of self-sustaining oscillations of internal flow, 
both phase and amplitude distributions of fluctuation 
parameters (velocity/pressure), along with an appropriate 
theoretical model, are called for. The relation between am­
plitudes of the waves due to sound (acoustic waves) and the 
wave due to vortex formation in the shear layer (vortex wave) 
should strongly influence the phase and magnitude 
distributions of the overall wave pattern. Yet, the central 
aspects of phase distributions and the manner in which they 
are associated with the corresponding amplitude distributions 
of the overall wave pattern have not been pursued. This in­
vestigation reveals the relation between the strength of self-
sustained oscillations of a typical internal flow system and the 
corresponding amplitude and phase distributions of the 
standing wave pattern. Features of peak to peak amplitude of 
the amplitude distributions, overall phase changes and local 
phase gradients at amplitude minima, and extent of phase 
"jitter" at amplitude maxima and minima are linked to the 
degree of resonant coupling of the flow system. 

Experimental System 

To allow accessibility for hot wire and pressure transducer 
measurements, a settling chamber-test section (cavity)-pipe 
system was chosen. Oscillations of this system are self-
sustaining; that is, coherent oscillations occurring in the test 
section (cavity) couple with the resonance characteristics of 
the upstream ssettling chamber. The resultant flow pattern 
involves a quasi-standing-wave phenomenon having a 
wavelength two orders of magnitude smaller than the 
corresponding acoustic wavelength. This pattern extends 

HONEYCOMB 
AND SCREENS 

CONTRACTION 

-SETTLING CHAMBER (TEST SECTION) / 

Fig. 1 Test section goemetry 

throughout the entire flow region downstream of the settling 
chamber, and the local flow behavior in the test section is 
strongly influenced. 

An essential aspect of this unsteady flow pattern is a self-
excited or self-sustained oscillation of flow in the test section. 
Among the basic types of self-sustaining oscillations is the 
flow past a cavity (see Fig. 1), which has been reviewed by 
Rockwell and Naudascher [7, 8]. As evidenced by several 
investigations, it is possible to generate strongly coherent 
oscillations even the the absence of acoustic standing waves 
within the cavity - i.e., even when the acoustic wavelength is 
much longer than the cavity length. On the other hand, if 
cavity resonance does occur, the oscillation can be sub­
stantially enhanced. This resonance can take the form of 
standing waves within the cavity (East [11]) or Helmholtz 
resonance of the cavity (Wilson, et al. [12]; Morel [3]). In 
the present investigation, care was taken to ensure that both 
the Helmholtz and standing-wave resonance frequencies of 
the cavity were at least an order of magnitude higher than the 
frequency of interest, thereby eliminating local resonance 
effects within the cavity test section. This condition sub­
stantially eases interpretation and analysis of the overall 
phenomenon described herein, although, in concept, the same 
flow mechanisms could interact effectively in cases where the 
self-sustaining and resonance frequencies have the same order 
of magnitude. 

As shown in Fig. 1, a turbulent pipe flow entered the stilling 
chamber in the form of a jet, expanded in the chamber (D2 = 
152A mm), and passed through a series of honeycomb and 
screens before experiencing acceleration in the axisymmetric 
nozzle (£>0 = 48.3 mm). Separation of flow past the cavity (0 
< L < 180 mm) generated organized vortical structures, 

-Nomenclature-

Do = 
D, = 
D2 = 
D = 

F = 

L = 
Lx = 
M = 
R = 
U = 

ca = 
c« = 

f = 
/o = 

fr = 

nozzle diameter (mm) 
exit pipe diameter (mm) 
cavity diameter (mm) 
complex amplitude of 
acoustic waves 
complex amplitude of 
vortex waves 
cavity length (mm) 
exit pipe length (mm) 
Mach number 
pipe radius (mm) 
jet center line velocity at 
separation (m/s) 
speed of sound (m/s) 
propagation speed of 
vortex wave (m/s) 
frequency (Hz) 
oscillation frequency of 
system with flow (Hz) 
resonant frequency of 
system without flow 

(Hz) 
/o = resonant oscillation 

frequency of system 
with flow (Hz) 

i = V^ l 

2?r 

= acoustic wavenumber 
(mm-1) 

= vortex wavenumber 
'" (mm-1) 

p = pressure (N/m2) 
r = radius coordinate (mm) 
t = time(s) 
u — velocity (m/s) 
u = complex velocity (m/s) 
x — coord ina te along 

centerline (mm) 
X = wavelength (mm) 

A„ = acoustic wavelength 
(mm) 

\ = 
A,.., = 

So 

4> 

vortex wavelength (mm) 
standing-wave wavele­
ngth (mm) 
radian frequency (Hz) 
momentum thickness 
(mm) 
momentum thickness at 
separation (mm) 
displacement thickness 
at separation (mm) 
phase angle 
phase angle at x = 0 

Subscripts 
rms = root mean square value 

r = real part 
;' = imaginary part 

Superscripts 
( ) = time mean value 
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which, in turn, were associated with organized flow distur­
bances transported downstream through the exit pipe (Dl = 
50.8 mm; Ll = 210 mm). The cavity length (L) was varied 
using the illustrated piston arrangement. To provide checks 
on axisymmetry, this arrangement could be rotated through 
angles up to 90 degrees. 

Two DISA 55D01 hot wire anemometer systems (with 
linearizers) were used to measure flow velocities inside the 
cavity and the exit pipe. One hot wire was mounted radially 
inside the cavity; the other reached into the exit duct from the 
downstream end. These hot wires could be traversed radially 
and axially, respectively. Linear potentiometers served as 
position transducers for traverses. Extensive checks were 
made for probe interference effects by taking measurements 
at the same location with different probe orientations. For 
measurements reported here, there were no discernible in­
terferences. 

A DISA 51F32 microphone pressure transducer (Bruel and 
Kjaer No. 4135 (6.35 mm) microphone) was mounted 10 mm 
below the impingement edge of the cavity. The pressure tap 
diameter was 3 mm, and the overall frequency response of the 
volume between the face of the tap and the transducer surface 
was calculated to be flat up to 3000 Hz, which is two orders of 
magnitude higher than the frequencies examined herein. 
Checks on axisymmetry of the pressure fluctuations, which 
were made by rotating the entire downstream part of the 
cavity (see Fig. 1), showed undetectable phase and amplitude 
variations, in accord with the long acoustic wavelength. 

The principal objectives of the unsteady data processing 
were acquisition of pressure and velocity amplitude spectra, 
which indicated the organized oscillations present, and phase 
and amplitude distributions of pressure and velocity fluc­
tuations. Both of these requirements can be met with an Ortec 
two-phase lock-in amplifier with a vector computer module. 
Two modes of operation can be used: spectrum analyzer and 
phase sensitive lock-in amplification. In the spectrum 
analyzer mode, the reference signal is provided by a frequency 
ramp generator. The lock-in amplifier is used as a swept 
bandpass filter (with a very high Q factor), with its center 
frequency determined by the frequency operator. The am­
plifier output (the rms value of the signal at that particular 
center frequency) is then plotted on an XY recorder (Y = 
amplifier output, X-frequency analog from ramp generator). 
If the lock-in amplifier is used as a phase sensitive detector, a 
suitable reference signal must be provided; here, it is the 
amplified and filtered output of the pressure transducer. Care 
was taken to compensate for phase shifts through the filter 
and associated electronics. The lock-in amplifier educts the 
rms values of the measured signal at the frequency given by 
the reference signal and also indicates the phase angle between 
the measured and reference signals. 

Results 

An extensive diagnostics program, carried out at the onset 
of the experiments, involved characterization of: frequency 
spectra of velocity fluctuations just downstream of the set­
tling chamber inlet, at the cavity inlet, in the cavity shear 
layer, and in and at the end of the exit duct, and spectra of 
pressure fluctuations at impingement (see Fig. 1). These 
measurements were made in conjunction with other revealing 
studies, such as extensions of the exit pipe (L{), placing 
vortex-inhibiting grids just downstream of the exit pipe, and 
measuring the response of the entire system to acoustic ex­
citation with and without mean flow. 

In essence, these initial forays showed that the predominant 
frequency of the cavity oscillation (triggered by the 
hydrodynamic instability of the free shear layer of the cavity 
[7, 8]) coincided with the Helmholtz resonance frequency of 
the settling chamber to produce the relatively large amplitude 

oscillations of the cavity-settling chamber system, which is the 
subject of this paper. Calculations were carried out using the 
coupled-resonator theory of Rayleigh [12] in order to examine 
possible acoustic coupling of the settling chamber-cavity 
combination. However, since the resonant frequencies were 
sufficiently different (settling chamber ~ 40 Hz; cavity ~ 287 
Hz), the overall acoustic character of the system was that of a 
single resonator. The settling chamber oscillated in the 
Helmholtz mode, and the cavity and downstream pipe acted 
as the resonator neck. In this respect, the large ratio of 
acoustic wavelength to cavity diameter (\t,/D2 ~ 55) made 
the cavity shape and diameter ratio (D2/Di) inconsequential. 
Since Helmholtz frequencies are typically low compared to 
those producing classical acoustic standing waves, this 
limiting (and simplifying) condition is likely to occur often in 
practice. 

Additional results of the diagnostics program, which 
should be noted here, involve the apparent lack of influence 
of the jet at the entrance of the settling chamber and the jet at 
the exit of the pipe (x = L + Lx), In the case of the former, 
detailed spectra in the jet shear layer showed broad-band 
turbulence and no organized components related to the 
Helmholtz frequency of the settling chamber; although 
broad-band excitation of Helmholtz resonance of the settling-
chamber (by the jet) may have been present to some degree, 
predominant excitation was associated with self-sustaining 
oscillations of the cavity. For the latter, it was originally 
anticipated that vortex growth in the jet shear layer would 
couple with the upstream pipe flow. Use of numerous grids 
and screens to attenuate this vortex growth did not affect the 
overall system oscillation. 

For data reported here, the experiments were conducted at a 
jet centerline velocity U = 2.75 m/s, resulting in a Mach 
number M = 7.95 x 10"3 and a Reynolds number based on 
D0 of Re = 8855. The Helmholtz resonance frequency of the 
system with no flow applied was measured to be 40.8 Hz. 

Figure 2 illustrates the variation of dimensionless 
frequencies (fr/f0 and/0 / /0 ) with impingment length (L/90) 
with and without mean flow1. (As discussed by Rockwell and 
Naudascher [7, 8], it is the characteristic shear layer thickness 
80 that is associated with the instability of the separated shear 
layer). The symbol / 0 designates the frequency of the self-
sustaining oscillation of the system at a given length (Z,/0O)> 
and /„ represents its value at the length giving maximum 
amplitude response (i.e. amplitude at L/60 = 97.6 in Fig. 3). 
Resonance of the system in the absence of flow, due to 
Helmholtz resonance of the settling chamber, was determined 
by loudspeaker excitation; this frequency is fr. The nor­
malizing momentum thickness (d0) of the mean flow ex­
periments also was used to non-dimensionalize data taken in 
absence of mean flow. Agreement of the no-flow theory 
(described above) with data is good. These data were obtained 
by observing the maximum response to loudspeaker excitation 
over a range of frequencies. It is evident that the presence of 
mean flow severely increases the slope of the frequency versus 
length variation. Aside from possible modification of the 
Helmholtz frequency by mean flow through the neck of the 
resonator, it is primarily the frequency associated with self-
excited oscillation of the cavity that produces this increase in 
slope. In fact, comparison of this slope (d(f0d0/U)/d(L/90)) 
with recent cavity experiments in a water tunnel where no 
system resonance occurred (Rockwell and Knisely [12]) shows 
that this slope is nearly the same for the same average value of 
dimensionless frequency (f060/U). That is, the inherent in­
stability of the cavity shear layer, an in [12], has a strong 
influence in triggering the oscillation of the system. Even 
though variations in length (L/60) shift the settling chamber 
away from its optimum resonance condition, substantial, but 
reduced, oscillation amplitudes still persist (see Fig. 3 and 
amplitudes at x/D0 = 0 in Fig. 5). 
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Fig. 2 Variation of dimensionless frequency (t/fm) with cavity length 
(L/0O). Frequency spectra (ums(f) and pms(f)) at system resonance 
C='or).Re«o = 9 4 

STAGE 

0 0 0 1 ° o o o o 
0°°ool 

°°°°ooo 

• D 
£ ] • • 

' o " o 
u 

u rms 
U 

L/e0 

Fig. 3 Variation of Strouhal number (f0$0IU), pressure (P rms /P r e f) and 
velocity (urmsIU) amplitudes with cavity length (L/Ba). Reeo = 94 

Also shown in Fig. 2 are typical amplitude spectra of the 
velocity fluctuations. At the nozzle exit (x/L = 0), essentially 
all of the energy is concentrated at the resonant frequency 
(f0r). At the cavity exit [x/L = 1), there are contributions 
from the first and second harmonics. According to the free 
shear-layer experiments of Miksad [15], this presence of 
harmonics indicates that the nonlinear process of vortex 
formation is well underway. In subsequent discussion, the 
corresponding downstream travelling wave will be called a 
"vortex wave"; in a more general sense, it could be termed an 
instability wave. This would accommodate the possibility that 
unstable disturbance growth, without concentration of 
vorticity into vortical structures, can also characterize the 
downstream propagating wave. 

As shown in Fig. 3, variation of cavity length (L) produces 
the above-mentioned changes in oscillation frequency of the 
system if) (see references [7, 8] for discussion of similar 
variations), pressure amplitude at impingement (Prms) and 
velocity amplitude on the centerline at impingement (urms at x 
= L, r = 0). Minimum amplitudes occur approximately at 
the location of the frequency jump, while maximum am­
plitudes occur near the middle of each stage of oscillation. 
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Fig. S Velocity amplitude at cavity oscillation frequency u r m s (f0)IU 
along the duct centerline (r/ft = 0) in the streamwise direction (x/D0) for 
several values of cavity length (L/0O). Re to = 94 

Comparison of the location of pressure and velocity am­
plitude maxima (at L/60 = 97.6) in Fig. 3 with the location of 
the curve intersection (L/60 = 97.6) in Fig. 2 show that they 
occur at the "resonance" condition of the system. Moreover, 

Journal of Fluids Engineering March 1980, Vol. 102/73 

Downloaded 02 Jun 2010 to 171.66.16.103. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



20 mV/d;v

L/eo ·126.9

L/e. '107.4

o mod.1

• measured
data

5.0

1.0 5.0

]~~~~'."'• L/6o·'26.9
urm.UJ •
-U-

o
1.0 5.0

0.05

Fig. 8 Comparison of measured velocity amplitude (urms(fo)/U) and
phase (Ll.cP = cPo) with values predicted by model

forced oscillations of a jet flow. Mean flow momentum and
displacement thickness, corresponding to the data of Fig. 4
(and subsequent figures), were: (Jo/Do = 0.0106 {j~/Do =
0.026. Reynolds numbers were Reo 0 = 94 and ReD 0 = 8855.

Figure 5 shows velocity amplitude at the oscillation
frequency (urms(fO)/U) measured along the centerline as a
function of distance downstream of the nozzle exit (xlDo).
Not given in Fig. 5 are the amplitude variations upstream of
the nozzle exit; traverse revealed that the amplitude was
constant upstream of the exit at least a distance of Do. This
finding reaffirms the assumption that the nozzle acts as the
"neck" of the settling chamber resonating in the Helmholtz
mode. For each cavity length (LI(Jo), the disturbance is
substantially amplified within the cavity to an order of five to
ten times its original amplitude at separation. This degree of
amplification is in accord with that attained by Crow and
Champagne [15) in their forced jet study, where their forcing
amplitudes (urms(fO)/ U) were of the same order. For the range
of cavity lengths investigated, the first peak amplitude is
consistently reached at xlL "" 0.75, followed by a rapid
decrease in amplitude, which persists into the entrance region
of the pipe. Within the pipe, there are only mild changes in the
peak amplitude of the quasi-standing-wave pattern with
increasing streamwise distance. The most remarkable
characteristic of all amplitude distributions is their short
wavelength ('AlDo 1), in comparison with the
corresponding acoustic wavelength (AalDo - 175). For
values of LI(Jo at, or close to, resonance (Le., LI(Jo = 97.6 in
Fig. 3), the amplitude minima, or "nodes," in Fig. 6 ap­
proach zero. On the other hand, high values of LI(Jo (=
117.2, 126.9), which are not close to the resonance condition,
possess smaller peak to peak amplitudes and amplitude
minima as high as 0.02 U. Furthermore, at these high values
of LI(Jo, the pipe exit corresponds to a maximum in the
velocity amplitude. In a strictly acoustical sense (in absence of
mean flow), this is expected at the frequencies studied
here: velocity antinode and pressure node at the exit.
However, at lower values of LI(Jo (at and near the resonance
condition), this is not the case.

The time-averaged phase distributions of Fig. 6 correspond
to the amplitude distributions of Fig. 5. Particularly in-
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Fig. 7 Velocity traces at velocity anlinodes (a, c) and nodes (b, d)
Illustrating phase "jitter." LIBo = 97.6, rlR = 0, ReOo = 94. (Correspond
to amplitude and phase variations of Figs. 5 and 6)

the average oscillation frequency (f(J1 U "" 0.016 where (J/(Jo =
1.95) agrees well with that predicted by Michalke [16] for an
axisymmetric jet. As in the investigation of Crow and
Champagne [17], the boundary layer was tripped just up­
stream of the nozzle exit, and according to Michalke [14], it is
most appropriate to use a charateristic momentum thickness
evaluated at a reference station downstream of separation.
Here, (J was determined at x = LI2.

As shown in Fig. 4 (LI(Jo = 97.6), the velocity amplitude of
the organized oscillation (urms(for)/U) at separation (xlDo =
0) varied from about 0.013 in the free stream to 0.045 in the
boundary layer. In fact, the distributions of turbulence in­
tensity (urmsl U) and mean velocity (iii U) at separation are
similar to those of Crow and Champagne [15], where a
loudspeaker system located in the upstream settling chamber

Fig. 6 Phase variation of velocity signal (cP'cPo) at cavity oscillation
frequency (fo) along the duct centerline (rlR = 0) In the streamwise
direction (xIDo) for several values of cavity length (LIBo)' ReOo =94
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teresting are rapid changes in phase (i.e. large d<t>/dx) at 
several streamwise stations for a given value of L/00. 
Comparison of the velocity minima in Fig. 5 with these 
regions of large d<j>/dx shows that they occur at the same 
values of x/D0. Both the overall magnitude of the phase 
change due to negotiating a velocity minimum and the rate of 
change of the phase (d(j>/dx) at the velocity minimum is a 
function of L/d0. That is, at values of L/60 near resonance 
(near L/d0 = 97.6 in Fig. 4), large changes in phase occur, 
and d<t>/dx is very large. In fact, in some cases, a phase jump 
is approached. In contrast, at the extreme value of L/d0 ( = 
126.9), mild phase variations occur. 

Determination of the phase at locations of velocity minima 
was, for cases near resonance, complicated by substantial 
phase "jitter," which is illustrated in Fig. 7. For each of the 
photos, three consecutive sweeps of the instantaneous velocity 
fluctuation were made on a storage oscilloscope. Comparison 
of the values of x/D0 for these photos with Figs. 5 and 6 
shows that Figs. 7 (a) and (c) correspond to locations of 
velocity maxima, while Figs. 7 (b) and (d) correspond to 
velocity minima and regions of large dfyldx. It is evident that 
at velocity maxima, there is little variation in phase, whereas 
at velocity minima, severe jitter occurs. In contrast, cases 
away from resonance (L/60 = 117.2, 126.9), though not 
illustrated here, exhibited negligible jitter. The corresponding 
values of d<j>/dx at locations of velocity minima are mild (see 
Figs. 5 and 6). 

The extent of one-dimensionality of the oscillation was 
determined by acquiring amplitude distributions, similar to 
those of Fig. 5, at various values of r/R. Up to r/R — 0.4, 
distributions along the entire length of the system followed 
closely those at r/R = 0, justifying a one-dimensional model 
for the central region of the pipe. 

Theory 

If the central features of the quasi-standing-wave pattern 
depicted in Figs. 5, 6, and 8 are considered to be ap­
proximated by superposition of upstream and downstream 
travelling waves, contributions from acoustic waves and 
waves due to vortex formation and propagation must, in 
general, be accommodated. The acoustic, or sound, waves 
will be assumed to possess an essentially one-dimensional 
character as they propagate through the core flow of the 
system. Likewise, the wave induced in the core flow by the 
passage of a ring vortex (formed in the free shear layer of the 
cavity) will be assumed to be quasi-one-dimensional. Since the 
formation and propagation of the ring vortices can, in 
concept, be described by stability theory, the propagation 
speed of the resultant "vortex wave" follows. In general, this 
wave will propagate at some fraction of the mean flow speed, 
as contrasted with the sound speed of the acoustic waves. 
Although both of these classes of waves (hereafter referred to 
as acoustic and vortex waves) are associated with the same 
frequency, their wavelengths differ by about two orders of 
magnitude (for this experiment) due to their different 
propagation speeds. 

The exit of the Helmholtz resonator (i.e. exit of the nozzle 
downstream of the settling chamber) generates a downstream 
propagating wave. Due to its long wavelength (ka/D0 ~ 175), 
this wave will be almost totally reflected from the exit of the 
pipe (at x = L + L, in Fig. 1) as shown by Ronneberger [1]. 
Consequently, contributions to the resultant wave velocity 
from downstream and upstream travelling acoustic waves 
must be accounted for: 

«„=D(e'<w'-Ar»JC»+e/(w'+'r"x)j where/ta = — (1) 

In this expression, it has been assumed that the velocity 

fluctuations of the incident and reflected waves are in phase 
and, for the time being, that both waves have the same wave 
number. This is valid only if M < < 1, which is the case for the 
experiment carried out here (M = 7.95 x 10-"). In contrast 
to the reflected acoustic wave, the wave resulting from vortex 
formation and propagation, which travels at a fraction of the 
mean flow velocity and has a relatively short wavelength 
(\/D0 ~ 1), is completely transmitted. Therefore, only a 
downstream propagating "vortex wave" must be modelled: 

uv = Fe*"'-M> where kv = —- (2) 
\ 

Superposing all contributions to the wave field, 

u = ua+uv= Be'"' {e-'kax + e'k"x} + Fe'<"' {e - 'V*) (3) 

and writing in time-independent form, the resultant velocity 
becomes 

n(ka,kv,x)=B{e-ik"x +eik«x] + F e " * ^ (4) 

where D = Dr + iDs and F = Fr + iFh Clearly, F will 
rapidly increase just downstream of the nozzle exit as the 
shear layer disturbance is amplified and the vortex is formed 
(see Pfizenmaier [2]). In the spirit of this approximate 
analysis, changes in F in the near field will be neglected, and it 
will be assumed that D and F are invariant with x. This ap­
proximation is most accurate downstream of the pipe inlet 
(see Fig. 5). 

Dividing by D, and letting D — £>,-, which means that the 
phase angle of the acoustic wave becomes 90 deg and serves as 
a reference for subsequent calculations, the normalized 
equation becomes 

u(x) .. v .. v F ., „ 
— - z=e-'

kax+ e'kaX-\ e~'kvX (5) 

This expression can be divided into real and imaginary 
parts: 
f i l l F F 
[ — J. = 2 cos (kax) + 2j- cos {kvx) - -^- sin (kvx) (6) 

f ^ ] = -yf cos (*„*) + - J - sin (kvx) (7) 

Since the acoustic wavelength (Xa) is, for this experiment, 
much larger than typical values of x, kax< < 1, and cos (kax) 
~ 1. Consequently, the resultant wave pattern will be in­

fluenced only by the amplitude of the acoustic waves and the 
amplitude and wave number of the vortex wave. The am­
plitude and phase angle of the resultant quasi-standing-wave 
are 

u f u u I 2 ) * 4 , f (u/Z>,), ~) 
77 = 7T +7=r ^ = a r c t a n (8) 

In general, it would be possible to calculate the amplitude 
and phase distributions as follows: estimate kv from shear-
layer stability theory for the specified frequency (/"„) of 
oscillation; determine ka from ka = 2irf0/ca (provided M 
< < 1); and specify the amplitude ratio of the vortex wave to 
acoustic wave | F/25, |. Although equations (6) and (7) require 
values of F, and Fr, it can be shown that the effect of 
specifying different F, and Fr (which together produce the 
same resultant | F |) is simply to translate both the predicted 
amplitude and phase patterns in the x direction provided 
L, /Xa < < 1. This means that if the ratio Fr/Fj is unknown, it 
is only necessary to impose, for example, the location of the 
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velocity maximum at, or near, the pipe exit (see Fig. 5). That 
is, this exit restraint fixes the axial location of the amplitude 
and phase patterns. Since the primary objective of this model 
is to examine the effect of wave amplitude ratio | F/Dj | on the 
distributions of velocity amplitude and phase exhibited in 
Figs. 5 and 6, \m, was determined from Fig. 5, thereby 
allowing direct calculation of kv. Alternatively, kv could have 
been estimated from the fact that the vortex wave travels at a 
fraction (~0.5 to 0.7) of the free stream velocity. More 
precisely, this wave speed can be calculated if the dimen-
sionless oscillation frequency is known (Michalke [16], 
Betchov and Criminale [18]). The wave number ka was 
evaluated from the observed frequency of the oscillation and 
the speed of sound at operating conditions. So, in summary, 
this model requires only the ratio of vortex wave to acoustic 
wave amplitude | F/D, | as an input. Other parameters can 
be reasonably estimated using concepts of hydrodynamic 
stability and acoustic wave theories. 

Fig. 8 shows comparison of the model with data for two 
extreme cases - near and away from resonance (see Figs. 2 and 
3). For L/d0 = 126.9, minimum values of Velocity amplitude 
are predicted to be relatively large (-0.023) and gradients in 
the phase distribution are mild. On the other hand, at L/60 = 
107.4, minimum values of velocity amplitude approach 
"nodes," the peak to peak amplitude is larger, and gradients 
in the phase distribution are large at locations of velocity 
minima. All of these features are modelled well, and it is 
evident that the nature of the standing wave pattern strongly 
depends on the ratio of vortex wave to acoustic wave am­
plitude | F/Z>; |. As this ratio increases, the peak to peak 
amplitude of the standing wave decreases. On the basis of this 
trend, it is apparent that the strength of the acoustic field 
induced during a self-sustaining oscillation must be suf­
ficiently large, relative to disturbances induced by vortex 
formation, if a standing wave pattern is to appear. 

Close inspection of the patterns portrayed in Fig. 5 reveals 
that Xsw is not constant, but increases slightly in the 
streamwise direction. From the relations \sw ~ c„/f and cv = 
f/d<t>/dx, 

XS1V ~ l/(d<t>/dx) 

which means that the phase gradient should decrease in the 
streamwise direction. The phase distributions of Fig. 6 show 
that the local phase gradients at locations corresponding to 
velocity minima (see Fig. 5) do, in an overall sense, decrease in 
the direction of flow. 

In the event that higher speed flows are considered, and the 
condition M < < 1 does not hold, it is necessary to consider 
different wave numbers for downstream (ka+) and upstream 
(ka-) propagating waves by accounting for the respective 
wave speeds, Ca(l+M) and C a( l -M). Furthermore, the 
complex amplitudes of the reflected waves must be deter­
mined using the incident wavenumber and pipe radius 
(Ronneberger [1]). If these aspects are accounted for, the 
superposition approach (equation (4)) can be employed to 
determine the overall features of the standing wave pattern. 

Conclusions 

The self-excited oscillations of a settling chamber-cavity 
combination, which is a typical geometry encountered in 
internal flow systems, can lead to a quasi-standing-wave 
pattern having a very short wave-length; this pattern extends 
well downstream of the settling chamber. For oscillations 
occurring at very low Mach number, it can be shown that the 
standing-wave characteristics are determined by the 
wavenumber of the vortex wave and the ratio of the vortex 
wave and acoustic wave amplitudes. The effect of amplitude 
of the vortex wave relative to the acoustic wave can be ap­
proximated using a linear model. Predicted amplitude minima 

and streamwise phase gradients of the wave pattern agree well 
with data both at and away from the resonant state of the self-
sustaining oscillation. 

When the entire system (settling chamber - test section 
(cavity) - pipe) is operating at resonance, the amplitude 
minima of the quasi-standing-wave approximate nodes, and 
the phase distributions exhibit very large gradients {d<t>/dx) at 
locations of these approximate nodes. In addition, successive 
sweeps of instantaneous velocity taken at these nodal points 
show large jitter in phase of the local fluctuations. On the 
other hand, at the velocity antinodes, the fluctuations display 
negligible phase jitter. 

Operation of the system sufficiently far away from the 
resonance condition results in a larger ratio of vortex wave to 
acoustic wave amplitude. Corresponding gradients in phase 
(d<j>/dx) are much smaller, and only very mild phase jitter 
occurs at locations of the amplitude minima. 

In concept, it appears that this type of quasi-standing-wave 
pattern can occur in any flow situation where vortical 
structures propagate downstream in the presence of up­
stream/downstream travelling acoustic waves, provided the 
acoustic wave has sufficient amplitude. Either acoustic 
standing-wave resonance or Helmholtz-induced resonance 
could enhance the amplitude of these acoustic waves during 
self-sustaining oscillations. 
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On the Relewance of Inwiscid 
Subsonic Flow Calculations to 
Real Centrifugal Impellers Flow 
The results of a fully three-dimensional inviscid compressible calculation technique 
for the flow field inside centrifugal impellers are compared to optical measurements 
in an open, radial exit impeller. It is concluded from this comparison that as long as 
viscous influence, including its displacement effects (manifested mainly in the jet-
wake flow structure), are not too big, the inviscid method applied can be used with 
confidence. When the viscous influence is such that it distorts the flow field in 
certain regions but displacement effects are still insignificant, the inviscid method 
can be used outside regions of viscous dominance. This situation occurs about 
halfway downstream, through the impeller. Only when displacement effects 
resulting from viscous flow field distortions, become big and the jet-wake profile 
becomes fully developed, does the inviscid method fail to predict the correct flow 
field. This happens at the exit of the impeller investigated here. 

Introduction 
A great deal of effort was invested in the last two 

decades in the development of methods to predict the flow 
field inside centrifugal impellers. Because of the complexity of 
viscous flow models (turbulent flow in rotating curved 
passages) most of the theories developed so far included the 
assumption that the flow is not viscous. It is the aim of this 
article to discuss the severity of this assumption and to try to 
find out under which conditions inviscid theories, which are 
relatively simple and inexpensive to use, can be used with 
confidence. 

The inviscid flow theories can be classified into a number of 
groups. On a geometrical basis, a possible classification is: 
Hub-to-Shroud theories (H-S), Blade-to-Blade theories (B-
B), quasi three-dimensional theories and three-dimensional 
theories. The calculation methods in each of these groups can 
be further classified on the basis of the computational scheme 
used: singularity methods, streamline curvature methods, 
finite difference methods or finite element methods. 

Historically, H-S streamline curvature techniques were the 
first to be developed. Being based on first order ordinary 
differential equations they required relatively modest com­
puter storage and simple numerical schemes. The price paid 
for this simplicity was the loss of ellipticity. Examples of these 
technics were published by Katsanis [1], Novak [2, 3], Davis 
[4], Smith [5], and Adler and Iberg [6]. H-S finite difference 
methods were based in most cases on Wu's theory [7]. Typical 
solutions were developed by Wu [8], Marsh [9], Davis [10], 
Katsanis and McNally [11, 12]. All these finite difference 
technics are physically more correct than stream-line cur­
vature methods because they are elliptic and therefore 
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mathematically compatible with the subsonic elliptic flow 
field they ought to describe. The same is true for the H-S 
finite element methods which are also based on Wu's for­
mulation [7]. Here three methods can be mentioned: Adler 
and Krimerman [13], Oates [14], and Hirsch and Warzee [15]. 

Solution on the B-B stream surface are essentially not much 
different from H-S methods because the differential 
equations of the B-B surface are basically analogous to the H-
S equations. The major difference is that on B-B surfaces the 
domains in which the solutions have to be found lack well 
defined boundaries at the inlet to, and exit from the blade 
passages. These boundaries are given on the H-S surface by 
the hub and shroud extensions in up, and down-stream 
directions. In contrast, the B-B boundaries in form of the 
leading and trailing edge stagnation streamlines, are deter­
mined in the course of the solution. 

B-B singularities methods avoid the boundaries problem. 
The best known methods were developed by Martensen [16], 
Wilkinson [17], Rauchman [18], Von der Braembussche [19] 
and Ogawa and Murata [20, 21]. B-B streamline curvature 
techniques were published by Katsanis [22] and Wilkinson 
[23,24]. 

Most frequently used in the B-B flow problem are finite 
difference solutions. Stanitz was a pioneer in this approach 
[25, 26, 27], followed by Katsanis and McNally [28, 29, 30] 
and Smith and Frost [31]. 

Recently, Deshpande improved the original computation 
scheme of Katsanis and was able to reduce computer time 
considerably [32], As on the H-S surface the B-B partial 
differential equation can also be solved with the finite element 
method. Two finite element methods were published so far, 
one by Adler and Krimerman [33] and the second by Price 
[34]. 

A number of quasi three-dimensional inviscid com-
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Fig. 1 The quasi orthogonals in the meridional cross section of 
Eckardt's impeller (roman numerals indicate surfaces of reference) 

putations were published in recent years. Each included a 
single or more restricting simplifications. These sim­
plifications cause the techniques not to be fully three-
dimensional. In 1971 Katsanis published his method [35], a 
combination of streamline solutions, restricted by linear 
variation of curvature normal to streamlines as well as 
constant radius and flow angle along B-B orthogonals. Senoo 
and Nakase [36], Bosman and El-Shaarawi [37], and Novak 
and Hearsey [38] all developed quasi three-dimensional 
methods restricted by B-B stream surfaces that were surfaces 
of revolution. Real B-B surfaces deviate considerably from 
axi-symmetric surfaces. Hirsch and Warzee [39] published a 
finite element method in which the interaction between the H-
S and the B-B solutions was stronger than in the previous 
methods because in this method the stream sheet thickness 
and the stream angle were transferred from the H-S solution 
to the B-B solution. But, nevertheless the B-B stream surfaces 
were still always axi-symmetric and the H-S solution, 
although corrected by computed fluctuation terms resulting 
from the B-B solution, was still carried out on a single sur­
face. 

These shortcomings were not present in Krimerman's and 
Adler's method [40]. Their finite element method did not 
include all the classical simplifying restrictions as B-B surfaces 

Fig. 2 Meridional geometry of Eckardt's impeller 

Table 1 Polar angle of radial blade elements as function of 
axial distance measured from the hub toward the impeller 
inlet 

Axial distance 
from the hub 

ram 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 

Polar angle of radial 
blade elements 

degrees 

0 
.2 
.9 

2.1 
3.8 
5.9 
8.6 

11.8 
15.5 
19.9 
24.9 
30.7 
37.3 
44.8 

of revolution and single representative H-S stream surface. In 
their method the interaction between the H-S and the B-B 
stream surface was as strong as it could be using Wu's theory 
[7] and no geometrical restrictions were imposed on the shape 
of any stream surface. There was also no restriction on the 
number of H-S and B-B surfaces used for the solution. The 
computation of the flow on a number of H-S flow surfaces is 
especially important for proper representation of the cir­
cumferential variation of the flow field. Krimerman's and 
Adler's results were restricted only by the inviscid nature of 
the fluid and by the fact that passage corners were assumed to 
be streamlines. 

Being an advanced three-dimensional inviscid computation 
technique with minimum simplifying assumptions, 
Krimerman's and Adler's method [40] was chosen in this 
study to serve as the instrument to produce the inviscid results 
which are compared to measurements. This comparison can 

• Nomenclature • 

b = impeller passage width in axial 
direction 

Cm ~ meridional velocity component 
PS = pressure side of passage 
SS = suction side of passage 

t = impeller passage width in 

circumferential direction 
«2 = impeller tip velocity 
y = coordinate in circumferential 

direction defined in Fig. 8 
z. = coordinate in axial direction 

defined in Fig. 8 

A/3 = deviation angle (blade angle 
relative to circumferential 
direction minus flow angle) 

H = normalized circumferential 
coordinate defined inFig. 8 

v = normalized axial coordinate 
defined in Fig. 8 
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Fig. 3 Calculated normalized meridional velocity distribution on 
reference plane I (the broken lines on the base are intersection lines 
between the plane of reference and the H-S and B-B stream surfaces) 

Fig. 4 Calculated normalized meridional velocity distribution on 
reference plane IV (the broken lines on the base are intersection lines 
between the plane of reference and the H-S and B-B stream surfaces) 

throw some light on the ability of inviscid subsonic methods 
to represent the real impeller flow. 

Comparison Between Measurement and Calculation 

One of the most extensive experimental studies in cen­
trifugal compressors impellers is Eckardt's work [41]. 
Eckardt published his work on the optical measurement of 
flow in a high speed open radial exit impeller in 1976. The 
measurements were carried out close to the design point of the 
impeller. The tip velocity was about 300 m/s. Eckardt used 
Schodl's L2F technique [42] and was able to obtain the in­
ternal impeller flow field details. His results show the 
development of a well established jet-wake structure from an 
almost uniform inlet flow field into a highly distorted exit 
flow field. Unfortunately the geometry of Eckardt's impeller 
was not published by him, so that his results could not be used 
for analysis by other investigators. Luckily the missing in­
formation was furnished by J. Moore [43], who reconstructed 
Eckardt's flow passage using available data. Analyzing 

Fig. 5 Calculated normalized meridional velocity distribution on 
reference plane V (the broken lines on the base are intersection lines 
between the plane of reference and the H-S and B-B stream surfaces) 

Fig. 6 Calculated deviation angles A/S on reference surface I drawn on 
the intersection lines with H-S surfaces (in this figure the values of A/3 
are negative) 

Fig. 7 Calculated deviation angles A/3 on reference surface IV drawn 
on the intersection lines with H-S surfaces (in this figure the values of 
A/3 are positive) 

Eckardt's measured flow field one discovers well pronounced, 
and certainly not negligible viscous effects. These effects are 
dominating the flow field even at the design point at which 
separation should not occur and viscous influence is an­
ticipated to be smaller than at off design points of operation. 
Being dominant as they are the question arises: are not viscous 
effects too strong to be neglected; do they render all inviscid 
calculation methods to be invalid? 
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Fig. 8 The coordinate systems of Eckardt and of the present method 

To answer this question Eckardt's impeller geometry as 
published by Moore [43] (See Fig. 2 and Table 1) was used as 
data, together with operation point specifications as 
published by Eckardt [41] to compute the inviscid flow field 
using the method described in [40]. The computation of the 
results presented here were carried out on an IBM 370/168 
computer using its PL/1 compiler. A memory of 150 K was 
required for compilation of the program. Seven hub to shroud 
and seven blade to blade stream surfaces, together with 29 
quasi orthogonal surfaces along the direction of the principal 
flow were used to generate the three dimensional grid used for 
discretization of the continuous flow field. With this grid a 
working volume of about 150 K was needed. The maximum 
convergence error on the relative velocity was 2 percent. 
Under these conditions the duration of the entire computation 
was about 6 minutes. The grid used in the computation is 
shown in Fig. 1. Results of the computation are given for the 
five reference planes I to V shown in Fig. 1. These reference 
planes are perpendicular to the direction of the main flow. 
Figs. 3 to 5 give the dimensionless meridional velocity 
component and Figs. 6 and 7 show the deviation angle 
distribution A/3. The computed and the measured flow fields 
are compared in Figs. 9 and 10 in coordinates as defined by 
Eckardt and illustrated in Fig. 8. 

The computed velocity distributions of Figs. 3 to 5 show the 
dominating basic potential influence as anticipated from 
results of an inviscid theory. This potential influence is 
strongly affected by compressibility, by nonzero vorticity and 
by three-dimensional effects. All these effects are well 
represented in the mathematical model and its solution 
method as used here. Despite these distortions however, the 
theoretical flow is basically healthy and orderly. The flow 
field distortion is considerably reduced as the exit is ap­
proached (Fig. 5) due to the elliptic effect of the far down­
stream uniform boundary conditions.1 

The broken lines on the basis of the diagrams in Figs. 3 to 5 
are the intersections of the reference plane in question and the 
computed H-S and B-B stream surfaces. The deviation of 
these broken lines from straight lines is the effect of the three-
dimensional nature of the present calculation technique. Were 
the B-B surfaces axisymmetric, and H-S surfaces represented 
by a single mean surface, the broken lines on the basis would 
have been straight. The calculated deviation angle distribution 
A/3 is given on the intersection lines between the reference 
planes and the H-S and B-B stream surfaces (the broken lines 
in Figs. 6 and 7). Again the deviation of these broken lines 
from straight horizontal and vertical lines is the three 
dimensional influence on the flow as represented in the model 
of reference [40]. 

The deviation angle inside the passage is insignificant as can 

For details of boundary conditions see references [13,30, and 40]. 

Journal of Fluids Engineering 

be seen in Fig. 6. It should be pointed out that A/3 is negative 
inside the passage, i.e., the flow angle is steeper than the 
blade. This negative deviation angle increases towards the exit 
and then reverses to become positive in agreement with well 
known and observed slip phenomena (Fig. 7). 

The calculated meridional velocity components are com­
pared with Eckardt's measurements in Figs. 9(a) to 9(e). In 
each figure three velocity profiles on the reference plane are 
given. One close to the shroud (small z/b value) the second in 
the middle of the passage and the third close to the hub. On 
surfaces I and II (Figs. 9(a) and 9(b)) agreement between 
experiment and calculations is good. On surface III, however, 
a considerable disagreement, due to the beginning of the 
suction side wake, can be observed near the shroud. In this 
figure the profiles given are closer to the shroud to show this 
disagreement. The wake on this plane is still very narrow and 
does not stretch as far as z/b = 0.1. The wake increases in size 
in a downstream direction as can be seen in Fig. 9(d) which 
shows the velocity profiles on surface IV. Here a trace of the 
wake penetrates as far as z/b = 0.5. Outside the wake, where 
inviscid effects are dominant the agreement between 
measurements and calculation is good as is evident from both 
Figs. 9(c) and 9(d). Displacement effects, caused by the 
wake are still not very big. On surface V at the impeller exit 
where the wake reaches its maximum size, disagreement 
between calculation and measurements are largest (Fig. 
9(e)). Here the wake occupies approximately 25 percent of 
the cross section with an average velocity of about 40 percent 
of the almost uniform velocity in the jet. Consequently, the 
displacement effect of the wake is clearly visible in the healthy 
jet regions of the passage. Further in these healthy regions the 
almost uniform velocity profile imposed on the elliptic flow 
by its downstream boundary conditions is visible both in the 
calculated and the measured profiles (although a level dif­
ference because of displacement exists). This is an indication 
that the uniform downstream boundary conditions and their 
assumed location as applied in the calculations are basically 
correct. 

The deviation angle A/3 is shown in Figs. 10(a) and 10(b). 
On surface III (Fig. 10(a)) the wake is still insignificant and 
the shroud clearance flow is still small, therefore, agreement 
between calculation and experiment is good. The situation is 
different further downstream on surface IV (Fig. 10(b)), 
considerable secondary flow components were measured close 
to the shroud. The secondary flow increased towards the 
direction of the suction side corner. In the region of the 
secondary flows agreement between calculations and 
measurements is poor. Along the shroud the predicted 
deviation angles disagree not only in their values but also in 
their direction. 

This is not surprising because viscous effects and shroud 
clearance leakage influence are not represented at all in the 
inviscid computation model which yields almost symmetric 
A/3 profiles on this surface. Inside the passage towards the 
hub, as shroud clearance effects decrease, the agreement 
between prediction and reality is better. The predicted 
direction of the secondary flow components is correct though 
smaller than measured values are calculated. This indicates 
that at least partially there is an inviscid contribution to 
secondary flows (an observation that is not new) but that even 
advanced inviscid theories can not represent the entire 
phenomenon. Unfortunately, no comparison could be carried 
out at the impeller exit, the "slip surface," because Eckardt 
did not publish data on the deviation angle distribution on 
this surface. 

Conclusions 

It is dangerous to draw general conclusions on the relevance 
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Fig. 9 Comparison between Eckardt's velocity measurements and the 
present calculation (a-surface I, b-surface II, c-surface III, d-surface IV, 
e-surface V) 

A/3 V b = o . i 

1 1 . t . 1 

0 

l . l . l . l 

' / b = 0 . 9 

t 1 1 . 1 — 1 — 1 1 

0 0 .2 0 . 4 0 . 6 0 . 8 1.0 0 . 2 0 . 4 0 .6 0 . 8 1.0 0 . 2 0 . 4 0 .6 0 . 8 1.0 

o E c k o r d t 

Kr imermon ond Adler 

A/? 3 
4 0 

3 0 

2 0 

1 0 

0 

- 1 0 

- 2 0 

- 30 

- 0 

\ 

-
-

-

0 

" 

-

0.1 

Q 

© 

_ ^ 
o 

\ 

o 

0.5 

e 

~~~̂ -~-̂ ^ 

\ 

© 

. i 

0.9 

o 

^ 
e 

0 0 . 2 0 . 4 0 . 6 0 8 1 0 0 . 2 0 . 4 0 . 6 0 .8 1-0 0 . 2 0 . 4 0.6 0 . 8 1.0 

^ y / t 

o Eckordt 

Kr imgrmon and Ad ler 

Fig. 10(a) Fig. 10(ft) 

Fig. 10 Comparison between Eckardt's deviaiton angle 
measurements and the present calculation (a-surface III, b-surface IV) 

82/Vol. 102, March 1980 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.103. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



of inviscid theories to real centrifugal impeller flow on the 
basis of a single comparison. It is clear that more comparative 
studies similar to the present one are required before a general 
comprehensive conclusion can be drawn. Especially, com­
parative studies are necessary for impellers operating at 
different tip speeds, for impellers with backswept blades, for 
closed impellers with no shroud clearance and for impellers 
with splitter blades (where inlet shocks into the splitter blades 
can cause regions of separated flow). Despite all this the 
present study can serve as a source of important information 
and as a starting point. 

At the impeller inlet (surfaces I and II) the agreement 
between the predicted and the measured flow fields was good. 
In this region boundary layers are still thin, no wake is yet 
developed and viscous phenomena have negligible effect on 
the flow field. The same observation is also true for surface 
III except for a narrow region near the open shroud where the 
initial development of a wake can be detected. Further 
downstream on surface IV agreement between the calculation 
and the experiment is still good in the region outside the wake. 
The reason is the relatively small displacement effect of the 
wake which on this plane occupies about five percent of the 
total area with an average velocity of approximately 40 
percent of the average velocity in the jet. Only on surface V 
where the displacement effects of the wake on the jet are 
considerable, are the predicted results totally inaccurate 
everywhere in the flow field: in the jet as well as, obviously, in 
the wake. 

It can, therefore, be concluded that for the present case: 
(a) when regions of viscous influence are small, and the jet-
wake structure is not yet developed, the prediction method 
applied will yield fairly accurate results, (b) when regions of 
viscous influence are present but are small enough as not to 
cause considerable displacement effects, the prediction 
method will deliver fairly accurate results outside the region 
of viscous influence only. This is true in regions where the jet-
wake profiles begin to develop, (c) when regions of viscous 
effects are relatively large as to cause considerable 
displacement influence, as in locations where the jet-wake 
flow is fully developed, inviscid methods will not be accurate 
over the entire flow field. In these regions an entirely viscous 
flow model has to be used because of the considerable 
displacement effects of the wake. A boundary layer approach, 
combined with an inviscid core model will most probably fail 
to predict the flow properly in this region. 

This does not mean that inviscid prediction techniques 
cannot be used any more with confidence. They can be safely 
utilized in all cases where there is strong reason to believe that 
considerable suction side wakes and other domains of viscous 
influence are not present. Examples are axial rotors or cen­
trifugal impellers with backswept blades in which the jet-wake 
flow structure in the impeller is not present. Further, inviscid 
methods can play an important role in patching techniques 
(inner-outer solutions) where they can be used in the inviscid 
methods can play an important role in patching techniques 
(inner-outer solutions x whee they can be used in the inviscid 
region coupled with a viscous solution in the rest of the 
passage where viscous influence is dominant. 
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Flow in the Initial Region of 
Axisym metric Turbulent Jets 
In the initial region of axisymmetric turbulent jets a core of uniform velocity is 
assumed to exist, bounded by an annular free shear layer. An empirical model for 
axial mean velocity is found from experimental measurements using a length scale 
which forces self-preservation in the central part of the free shear layer. This model 
is applied to the integral form of the momentum and energy equations, subject to 
the boundary layer simplifications, to obtain an approximate solution for the 
development of jets where the thickness of the mixing layer at the nozzle exit is 
assumed negligible. The differential form of momentum and continuity equations 
are also solved by a finite difference technique of DuFort-Frankel type using a 
typical boundary layer type of velocity profile at the exit of the nozzle. The results 
of this method are compared with those of the empirical velocity method, and the 
present and existing experimental results. Prandtl's mixing length is shown to be a 
slightly nonlinear function of the axial distance and is used to define the eddy 
diffusivity for this region. 

Introduction 

When an incompressible turbulent jet discharges into still 
air, the shear layer grows continuously with the entrainment 
of ambient air. For convenience it is usual to divide the 
turbulent jet into three Principal regions: initial region, 
transition region, and developed region. The initial region 
applies to jets with an initial core of uniform velocity or 
potential core and extends until the core disappears. This 
region starts from the exit plane of the nozzle and shows three 
distinguishable layers- 1) outer layer, 2) mixing layer and 3) 
potential core as shown in Fig. 1. The axial mean velocity 
changes in the mixing layer from efflux velocity at the 
potential core side to near zero velocity at the outer layer side. 
This variation of mean velocity is due to the transfer of 
momentum from the potential core to the outer layer. The 
transition region starts after the initial region. Further 
downstream there exists a developed region where the eddy 
structure becomes such that the flow quantities, i.e., mean 
velocity, turbulent intensity etc., become self-preserving. 

Much work has been done both theoretically and ex­
perimentally in the developed region by Heskestad [1], 
Wygnanski, et al. [2], Rotta [3], Schlichting [4] and others. 
Much less work has been done in the initial region except 
lately in relation to noise by Bradshaw, et al. [5], Davies, et al. 
[6] and Ko and Davies [7], Also Hatta and Nozaki [8] have 
developed some theoretical models and Von-Frank [9] has 
made extensive measurements of mean velocity in the initial 
region. 

The aim of the present research was to determine ex­
perimentally both mean velocity and turbulent quantities in 
the initial region of a turbulent jet of uniform core velocity 
and thin mixing layer at nozzle exit, and from these 
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Fig. 1 Jet geometry and finite difference grid 

measurements develop satisfactory theoretical models. This 
paper establishes the mean velocity field and jet boundaries 
both by measurement and by solving the differential 
momentum and continuity equations of flow. The results will 
be used in future work to develop a turbulence model for the 
initial region. 

The existing self-preserving models of mean velocity given 
by Townsend [10] and Schlichting [4] for the developed region 
of jets do not apply to the initial region. The present authors 
have developed an empirical and universal expression of the 
axial mean velocity defining the similarity variable -q = (r— 
rVl)/b, where b is a length scale proportional to the width of 
mixing layer and expressed by the following equation, 

b_ 
r0 

1.0 

d(u/u0) 
Jr=ri/ 

(1) 

d(r/r0) -ir=rVl 

where r0 is the jet exit radius, rVl is the radial distance for 
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u/u0 = 0.5, and u0 is the efflux velocity. The coordinate rVl 

and the length scale b were chosen as the most convenient for 
establishing the self-preserving qualities of the jet in the initial 
region and for ease of plotting experimental data. 

All the calculations reported in this paper used the turbulent 
eddy diffusivity in terms of Prandtl's mixing length which is 
shown here, and also by Madni and Pletcher [11] to apply 
satisfactorily to the initial region. The jet has been analyzed 
by the following two methods: 

1) Empirical velocity method. 
2) Numerical method. 

The first method is preferable in the sense of ease of 
calculation, but can only be applied to a jet with a thin mixing 
layer at the nozzle exit. The second method, although more 
time consuming, allows an arbitrary initial velocity profile 
and thus could be applied to a jet having a thick mixing layer 
at the nozzle exit. The numerical method is also the more 
accurate. 

Methods of Analysis 
1. Empirical Velocity Method. Using the present mean 

velocity measurements, which will be presented later in the 
paper, a third order polynomial for the main portion of the 
mixing layer, and superimposing Townsend's [10] hyperbolic 
tangent velocity profile at the outer layer side the following 
composite velocity profile was established. 

u 
«o 

u 

u0 

= 1.0, T? < -0.736 

= 0.5 - r, + 0.05 T;2 + 0.66 T/3, 

-0.736 < 7] < 0 . 5 

= A{\ - tanhB(?j-0.5)] T; > 0.5 (2) 

The constants A = 0.095 and B = 4.79 were determined by 
using continuity of velocity and matching the slope of the 
velocity profile at r\ = 0.5. This composite profile behaves 
asymptotically at the outer part of the jet with RMS deviation 
of (AM/H 0 ) R M S = 0.0112. The inner radius ri corresponds to rj 
= -0.736 where u/u0 = 1.0 and the outer radius r2 is 
defined here as corresponding to rj = 0.8 where u/uQ = 0.01. 
So, the inner and the outer radii of the shear layer in terms of 
rVl and b are, 

The width of the shear layer bx can be obtained by subtracting 
/•j from r2 in the following form 

6, = 1.5366 (4) 

From the basic mass and momentum conservation 
equations of flow in a constant pressure region without 
contacting solid surfaces and subject to boundary layer ap­
proximations, the integral momentum and energy equations 
are, 

3 

dx 
dr = 0 

1 d 

2dx 

ru2 

o 

J."'"*--IMS)' dr 

(5) 

(6) 

The turbulent eddy diffusivity vT expressed in terms of 
Prandt l ' s mixing length L and mean velocity gradient is: 

= L2 
du 

~dr 
(7) 

where L is assumed to be a function of x only. Introducing 
equation (7) in equation (6), t ransforming the variable r to ij, 
and using empirical velocity equation (2) into fundamental 
equations (5) and (6), and integrating, the following two 
ordinary differential equations are obtained: 

d 

dx .2 
+ 0.548 

1 d 

2d~x [4 — h r + 0.451 

rVlb 

rv,b 

0.215 

0.203 

b2 

b2 

] - 0 (8) 

I? 

b2 [-0. 658 + 0.0131 (9) 

These equations are subject to boundary conditions: 

at x = 0, b = 0, /-, = r0. 

Physically these boundary conditions mean that at the exit of 
the nozzle the potential core fills the nozzle and the length 
scale b = 0 approximates a very thin mixing layer at the 
nozzle exit. Integrating equation (8) with the boundary 
condition at x = 0 and using equation (3a), the following 
relation is obtained: 

0.188 b/r0 + VTO - 0.0754 (b/r0)
2 (10) 

A,B = 
b = 

* i = 
L = 
r = 

h = 
r2 = 

Re = 

u = 

r, = rVl - 0.7366 

r2 = rVl + 0.8b 

constants in equation (2) 
scale for linear distance 
width of the shear layer 
Prandtl's mixing length 
radial distance measured 
from jet axis 
radius of potential core 
radius of jet for u/u0 = 0.01 
exit Reynolds number based 
on nozzle diameter 
axial velocity 

H' 

V 

v' 

w' 

X 

V 

vT 

' Equation (8) and equation (10) are used in equation (9) to 
Ob) obtain, 

= fluctuating velocity in x-
direction 

= radial velocity 
= fluctuating velocity in r-

direction 
= fluctuating velocity in z-

direction 
= axial distance measured from 

the exit plane of jet 
= laminar kinematic viscosity 
= turbulent kinematic viscosity 

ij = similarity variable = (r-
rVl)/b 

p = density of air 
A = difference between calcu­

lation and measurement or 
between two solutions 

8* = displacement thickness 

Subscripts 
0 = exit condition 

RMS = root mean square 
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d^ll^ = 2(L/b)2 [o.658 -0.0496 (b/rQ)2 

d(x/r0) L 

+ 0.1109 6/ r 0 Vl-0.0754 (b/rtfy 

[o.0965 - 0.0145 (blr0)
2 + 

0.0121 b/r0yjl -0.0754 (S/%)5] (11) 

The ratio L/ft was determined experimentally by measuring 
the shear stresses and velocity gradients, and using the 
following relation, 

u'v' = L2 — 
du , du 

(12) 
dr dr 

Transforming the variable r into r/, equation (12) is written as: 

{Lib)2 = 
u v 

du du 

di\ drj 

(13) 

The experimental values of Lib presented later in the paper, 
lie within the range 0.099 and 0.109 with an average, 

Lib = 0.106 (14) 

Using equation (14), equation (11) can be integrated 
numerically with the starting condition at x = 0, to obtain b 
and hence r , , r2 and 6, from equations (3a), (3b) and (4) as 
functions of x. 

2 Numerical Method. Madni and Pletcher [11] solved the 
differential momentum and continuity equations for the mean 
velocity by using finite difference technique starting with 
uniform exit velocity at the nozzle. The same type of finite 
difference technique was used here to determine the mean 
velocity and the goemetry of the turbulent jet in the initial 
region. The differential momentum and continuity equations 
were solved using the actual exit velocity profile which 
consists of a uniform core with a very thin boundary layer. 
Comparisons of the finite difference results with 
measurements and the results of the empirical velocity method 
are presented. 

The governing equations are as follows: 
The continuity equation, 

3(w) | d(vr) 
dx dr 

0 (15) 

Neglecting pressure gradients, the axial momentum equation 

du du I d , , 

dx dr r dr 
(16) 

The shear stress T includes both viscous and turbulent con­
tributions, 

r du 
- = v — — u v 
p dr 

where v is molecular diffusivity, u', v' are fluctuating 
components of velocity. Expressing the turbulent shear stress 
in terms of Prandtl's mixing length and the gradient of axial 
mean velocity, 

T du T. . du . du 
— = v — — L \ — — 
p dr ' dr ' dr 

(17) 
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Fig. 2 Schematic diagram of experimental setup 

where L is given by equation (14). The appropriate boundary 
conditions are: 

du 
— (x,0) = 0,t;(*,0) = 0,Ump^u(x,r) = 0 (18) 

In addition the measured initial distribution for u{x,r) is used, 

u(x0,r) = f(r) (19) 

The properties v, p are assumed constant. 
Equation (16) associated with boundary conditions (18) and 

(19) were solved by an explicit finite-difference technique of 
the Dufort-Frankel type as Madni and Pletcher [11] used for 
axisymmetric jets. Examples of how the derivatives are ap­
proximated for this method and the truncation errors, are 
given in reference [12] and are not repeated here. The finite 
difference grids used for the calculation are shown in Fig. 1. 
The computer program developed for this purpose had the 
capability of handling nonuniform grid spacings in both 
directions. This calculation was made with uniform grid 
spacing in the /•-direction. It is necessary to use very small grid 
spacings in this region to attain convergence of the solution. 
The calculations were performed by dividing the discharge 
radius into 30 equal increments. Von Newman's method of 
stability analysis [13] showed that the finite difference 
equation suffered a mild stability constraint. The finite 
difference equation and its constraint are shown in the Ap­
pendix. 

Experimental Facilities and Measurements 

A one-in. diameter nozzle was attached to a 12-in. diameter 
settling chamber containing flow straighteners and screens, 
and supplied with air from a high pressure laboratory line 
through a pressure regulator and needle valve to produce an 
axisymmetric jet with uniform central core velocity. The exit 
Reynolds number based on nozzle diameter was 1.53 x 105. 
The schematic diagram of the experimental setup together 
with pertinent dimensions are shown in Fig. 2. A line filter, 
not shown, followed the pressure regulator to remove par­
ticles 1 micron or larger. 

The mean axial velocity was measured by using a DISA 
Constant temperature hot-wire anemometer (type 55M10) 
with a linearizer (type 55D10), signal conditioner (type 
55D31), digital voltmeter (type 55D31), and a DISA miniature 
probe (type 55P11) with a 5ju. tungsten normal wire (0.005mm 
dia) of an approximate length Imm. The hot wire con­
figuration is shown in Fig. 2, and it was traversed up and 
down by a motor operated traversing mechanism with a scale 
of precision 0.0254mm. The shear stress was measured by 
using the same normal wire and a single 5/tt slanting wire 
(0.005mm dia) with a DISA Probe (type 55P12). 

The hot-wire anemometer was calibrated by using a Pitot 
tube with a micromanometer in the uniform core of the jet. 
The nonlinear output of the anemometer was linearized by 
passing the signal through a linearizing circuit. The low 
velocity calibration was performed as outlined in the DISA 
instruction manual for Linearizer Type 55D10. The 
repeatability of the calibration curve was found to be ±1 
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Measured velocity distribution at exit plane. Uncertainty of ulu0 
5 percent, 20:1 odds. 

equipment. In the calibration unit the uncertainty of mean 
velocity «/w0 was estimated to be ± 0.3 percent, 20:1 odds. 
The mean velocities u/u0 which were obtained by using a 
linearized circuit showed uncertainty of ± 1.5 percent in the 
main region and ± 4 percent in the outer region where 
velocity is less than 6 m/s. The shear stress was calculated by 
using the standard Kramer's relation given in reference [15]. 
The uncertainty of u'v'lu\ was estimated to be less than ± 
4.5 percent, 20:1 odds, neglecting wire angle uncertainty. The 
angular uncertainty of the slanting wire caused an additional 
uncertainty in u' v' lu\ of ± 3 percent, 20:1 odds, bringing 
the total uncertainty to less than ± 8 percent for the major 
portion of the shear layer where the mean axial velocity is 
greater than 6 m/s. This value is exceeded at the outer layer 
side where the mean velocity is less. 

The repeatability of mean velocity and shear stress were 
tested by taking 300 readings at each of nine locations in the 
mixing layer at three planes normal to the axis of the jet and at 
distances ofx/r0 = 4, 6 and 8 from the nozzle. Repeatability 
of measurements was estimated to be ± 5 percent by drawing 
frequency distribution curves and using 20:1 odds. 

The micromanometer readings and the hot wire traversing 
were within the precision of 0.0254 mm. The temperature 
variation was noted to be ± 0.3 °C. 

Fig. 4 Self-preserving velocity profile in the initial region. Uncertainty 
of UIUQ is ± 1.5 percent, 20:1 odds, for u > 6m/s, and ± 4 percent, 20:1 
odds, for us 6m/s. 

Results and Comparisons 

The present limited measurement of velocity within the 
boundary layer shown in Fig. 3 gives the displacement 
thickness S*/r0 = 0.006 at the nozzle exit. From the mean 
velocity and turbulence measurements of Fig. 3 it was 
assumed that the present jet contained a very thin turbulent 
boundary layer at x = 0. The measured velocity distribution 
at the nozzle exit in Fig. 3 supplemented by 1.0/6.66 power 
law for velocity inside the boundary layer was used to start the 
finite difference solution. 

Fig. 4 shows that the measurements of the axial mean 
velocity in the initial region have an approximate self-
preserving distribution when plotted against the similarity 
variable i) = {r — rVl)/b. It also shows that the empirical 
velocity profile as expressed by a composite equation (2) is in 
reasonable agreement with measurements. The overall RMS 
deviation of the combined experimental data at sections x/r0 

= 2, 4, 6 and 8 from the empirical profile was calculated to be 
(Aw/w0) RMS = 0.0112. The axial mean velocity obtained from 
the finite difference solution is also approximately self-
preserving in the u/u0 versus r\ plane. The results of the finite 
difference solutions at sections x/r0 = 2 and 8 are plotted in 
Fig. 4 to show a comparison with the empirical model. The 
RMS deviation of empirical model and finite difference 
model from the experimental data are shown in Table 1. 

Table 1 A comparison of RMS deviation 

percent, 20:1 odds, following the procedure given in reference 
[14]. The angle of inclination of the slanting wire was 
measured by positioning the probe in a slide projector and 
projecting the wire image on a paper screen. To minimize 
image distortion, the wire was located near the centre of the 
lens and the screen was positioned perpendicular to the 
projector. Twenty values of the angle of the slanting wire fell 
within the range 45 deg ± 36 ' . 

The uncertainty of the measurements of mean velocity and 
shear stress are influenced by variations of ambient tem­
perature, the characteristics of the linearized circuit, con­
taminations of the hot wires during the experiments, the 
accuracy of the angle of inclination of the hot wire to the 
mean flow direction and the accuracy of the calibrating 

Axial distance 
x/R0 

2.0 
4.0 
6.0 
8.0 

Finite-diff. solution 
(Au/u0)RMS 

0.0067 
0.0119 
0.0150 
0.0180 

Empirical equation 
(Au/u0)RMS 

0.0154 
0.0137 
0.0101 
0.0098 

The similarity variable TJ was chosen to force agreement with 
experimental measurements and to produce self-preservation 
in the central region of the mixing layer. It is not surprising 
that the slight disagreement between the measurements and 
the model shows up in the outer part of the mixing layer, from 
whence comes the major part of the RMS deviation shown in 
Table 1. The comparison shows that equation (2) describes the 
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r/r0 

Fig. 5 Calculated and experimental mean axial velocity distribution. 
Uncertainty of u/u0 is ± 1.5 percent, 20:1 odds, for u > 6m/s, and ± 4 
percent, 20:1 odds, foru < 6m/s. 
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Fig. 6 Length scale blrQ and Prandtl's mixing length Llr0. Uncertainty 
for b/r0 is ± 2 percent, 20:1 odds. 

axial mean velocity in the initial region with a deviation from 
the experimental values of not more than ± 1.5 percent. It is 
interesting to note that the conventional variable (r-r0)/x does 
not produce satisfactory self-preservation in the present 
experimental measurements or those of Bradshaw, et al. [5] 
andSami, etal. [16]. 

The axial mean velocity calculated by the finite difference 
technique is plotted against the radial distance r/r0 in Fig. 5 to 
show comparison with the measurements of Bradshaw, et al. 
[5]. Sami, et al. [16] and the present measurements. 
Satisfactory agreement is shown. 

Simpson's integration rule is used to calculate the scale b/r0 
from the first order differential equation (11) with starting 
condition at x = 0. These results together with measurements 
and those obtained from the finite difference solution are 
shown in Fig. 6. The root mean square deviation of the results 

x/r, 
Fig. 7 Calculated and experimental iso-velocity lines. Uncertainty of 
ulu0 is ± 1.5 percent, 20:1 odds. 
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Fig. 8 Calculated velocity at rlrQ = 1 and its comparison with Hatta's 
model and experiments. Uncertainty of ulu0 is ± 1.5 percent, 20:1 
odds. 
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of equation (11) from those of the finite difference solution Fig. 9 Turbulent shear stress distribution. Uncertainty of JFV7 

was found using values of 100 points equally spaced along the '"0 is ± 8 percent, 20:1 odds. 
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Fig. 10 Experimental values of Lib. Uncertainty of Lib is ± 5.5 percent, 
20:1 odds. 

axial direction in the mixing layer. The resulting values are: 
(A&//O)RMS = 0.00128 and (A/-,/;//-0)RMS = 0.000953. Fig. 6 
shows that the scale b is only approximately a linear function 
of x. The nonlinearity of b would generate the width of shear 
layer bu and the Prandtl's mixing length L, as nonlinear 
functions of x. The linear approximation of Prandtl's mixing 
length given by Rotta [3] has also been compared with the 
present results and measurements in Fig. 6. 

The radii for u/u0 = 0.5, u/u0 = 0.99 and u/uQ = 0.01 
were calculated by using equations (10), (3a), and (36), and 
plotted in Fig. 7 to show a comparison with measurements 
and the results of finite difference solution. The isovelocity 
lines u/u0 = 0.99 and u/u0 =0.5 obtained from the results 
of finite difference solution are in good agreement with 
measurements and the deviation from that of the empirical 
velocity method is insignificant for the major part of the shear 
layer. The deviation that is observed in the outer and inner 
boundaries in Fig. 7 may be expressed in terms of RMS 
difference which was calculated by choosing 100 points at 
equally spaced intervals and found to be (Ar2/r0)RMS = 
0.0193 for outer boundary and (^i/r0)RMS = 0.00215 for 
inner boundary. Here it is noted that the jet boundaries are 
not quite linear with the axial distance x. Laurence's [17] 
approximation of outer boundary is also drawn in Fig. 7 to 
show a comparison with the present outer boundary for u/u0 
= 0.01. The major contribution to uncertainty in the velocity 
measurement occurred in the outer layer. If one wishes to 
compare theoretical results with experimental values it is 
preferable not to formulate in terms of outer radius and the 
width of the mixing layer of the jet as Abramovich [18] did. 
Hatta and Nozaki [8] assumed the eddy diffusivity to be 
proportional to the width of the shear layer and the center-line 
velocity and developed a self-preserving model of axial mean 
velocity in terms of r{ and r2 which predicts constant velocity 
at r/r0 = 1.0 for any axial distance in this region. Fig. 8 
shows the shortcoming of Hatta and Nozaki's [8] model and 
the agreement of present calculation and measurements with 
the experimental measurements of Bradshaw, et al. [5] and 
Von-Frank [9]. The present calculations assume the eddy 
viscosity is equal to the radial velocity gradient and the square 
of the mixing length. The length of initial region calculated by 
the finite difference method was close to x/r0 = 9.0, which 
agrees with the prediction of Madni and Pletcher [11]. It was 
calculated here to be x/r0 = 8.8 by the empirical velocity 
method. Albertson, et al. [19] measured its value to be less 
than 10.0 and Davies, et al. [6] found it to be 9.0. 

The experimental measurements plotted in Fig. 9 show that 
the shear stress is also approximately self-preserving in the 
initial region. Here it is repeated that the uncertainty of shear 
stress measurements is about ± 8 percent in the main part of 
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mixing layer and may be higher in the outer boundary where 
axial mean velocity is less than 6 m/s. The present 
measurements of shear stresses were used to calculate Lib 
from equation (13) for axial distances x/r0 = 2, 4, 6, 8 and 
their variations with radius as shown in Fig. 10 and it is 
observed that Lib lies in the range between 0.099 and 0.109 
for the initial region of the jet. The calculations presented in 
this paper used Lib = 0.106 as an average of all observations 
for x/r0 = 2, 4, 6, 8. Satisfactory results for mean velocity 
and jet boundaries already discussed were obtained using this 
value. 

Summary and Conclusion 

1) A suitable length scale and coordinate system were 
chosen to develop an empirical self-preserving model for axial 
velocity of the mixing layer in the initial region. The ratio of 
Prandtl's mixing length to this length scale was found con­
stant throughout the whole mixing layer. 

2) Development of the jet was predicted by the empirical 
velocity method using Prandtl's mixing length as a function of 
x only and satisfactory agreement was found with 
measurements. 

3) Differential momentum and continuity equations were 
solved by finite difference technique and the results were 
found to be in good agreement with the measurements and the 
results of the empirical velocity method. 

4) Prandtl's mixing length is only approximately a linear 
function of x and its dependency on radius is negligible in the 
initial region. 
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A P P E N D I X 

The equations (15), (16), and (17) were transformed into 
nondimensional forms using the following nondimensional 
variables: 

These equations start the solution with information at the 
previous streamwise station. 

After calculating the necessary information at the second 
station, the following finite difference equation of Dufort-
Frankel type, that require information from two previous 
streamwise stations, start, calculation. 

11.. v 
^ (t / / + 1 , - I / /_ l i /) + ^ 

A* + +AA- AR. + AR_ 

(t/,y+1-t/^1)=l 2 

Rj AR++AR. 

{[ \+L* UU+1-O-W+IJ + U,-IJ) 

AR + 

R = ru0 

T*
 L "o AIT

 u 

L* = , and U = — 
v u0 

The explicit finite difference equations for the non-
dimensional momentum and continuity equations are written 
as: 

Rj+RJ+i Uu+i-Q-m+u + Uj^j) 

2 AR + } 
0.5(t/,+ „ + C/,_1J)-L/,J_1 -[l+L,*2 

AR_ 
(22) 

2 AR_ } 
Rj+i 

4 AX 
[ui+, j - uu + ui+ lJ+l- u,J+, ] + 

Rj+ I K-+ u+i~Rj VJ+ \j 

AR 
= 0 

(20) 

(21) 

Rj+' + - J ' (Ui+lJ+1 + Ul+lJ - U,_lJ+, - U,.u) 
4(AX++AX_)"~'+ltJ 

AR + + A/?_ 
(23) 

In this scheme the axial mean velocity Ui+IJ is calculated first 
by using equation (22) and then the radial velocity Vi+lJ+l 

from equation (23). Von-Neuman's method [13] of stability 
analysis with terms of degree one in variation and uniform 
radial grids develops the following stability criterion. 

(AX+ + AX_ ) < UuARl V,J + (L- /AR)2 

lUij-U^-U^ 
{\-AR/2Rj)\ (24) 
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An Experimental Study of the 
Secondary Flow in a Curwed 
Rectangular Channel 
The Taylor-Gortler vortex pattern in a curved rectangular channel of high aspect 
ratio has been examined using hot wire anemometry. Using a two dimensional 
traversing mechanism, velocity surveys have been made at several radial locations 
across the channel for several values of Dean number. The velocity measurements 
show that the periodic secondary motion undergoes a phase shift as the hot wire 
probe crosses the midplane between the concave and convex walls. The 
measurements also indicate that the secondary flow wave number is constant over 
the range of Dean numbers examined. Complementary flow visualization 
photographs of the secondary motion have also been obtained. 

Introduction 

Secondary flow due to centrifugal forces induced by 
streamline curvature has become an important area of in­
vestigation in a broad range of disciplines from geophysics to 
aerodynamics. Recently it has been shown [1, 2, 3] that wall 
curvature can have a significant effect on the performance of 
film cooling over turbine blades. It has also been hypothesized 
that centrifugally induced secondary motion due to streamline 
curvature may play an important role in the cross-hatching 
phenomenon observed on reentering missiles [4]. It is ap­
parent that there are many areas of fluid mechanics from the 
high temperature, high speed flow in rocket nozzles to the 
flow in heat exchangers, where the secondary motion due to 
streamline curvature could profoundly effect engineering 
design considerations. 

The flow in a rectangular channel which is curved in the 
streamwise direction provides an excellent configuration for 
studying this form of secondary flow due to streamline 
curvature. If the span of the channel is large compared to the 
channel spacing in the radial direction, the secondary flow 
will be in the form of regularly spaced vortices whose axes are 
in the direction of the mean motion. 

In 1916 Lord Rayleigh [5] showed that flows with curved 
streamlines are stable under the condition that the circulation 
always increases with radial distance. G. I. Taylor [6, 7] 
published an extensive analytical and experimental study of 
the flow of a viscous fluid contained in the gap between a 
stationary outer cylinder and a concentrically rotating inner 
cylinder. Gortler [8] investigated the secondary flow in the 
boundary layer along a concave wall. He also found that the 
secondary motion is in the form of streamwise vortices. A. M. 
O. Smith [9] has performed an extensive numerical analysis of 
the flow in a curved boundary layer. 

Contributed by the Fluids Engineering Division and presented at the Joint 
ASME/CSME Applied Mechanics, Fluids Engineering, and Bioengineering 
Conference, Niagara Falls, N. Y., June 18-20, 1979, of THE AMERICAN SOCIETY 
of MECHANICAL ENGINEERS. Manuscript received by the Fluids Engineering 
Division, March 12, 1979. Paper No. 79-FE-6. 

The flow of a viscous fluid in a curved channel was first 
studied by W. R. Dean [10]. He determined that the secondary 
flow would appear only if the parameter (Ud/v) \Id/Rj 
were greater than a critical value of 36. 

The parameter {Ud/v) Vc?/i?,is now referred to as the Dean 
number, where U is the mean velocity in the channel, v is the 
kinematic viscosity, d is the spacing between the inner and 
outer walls of the channel and R, is the radius of curvature of 
the inner wall. Reid [11] has made more accurate calculations 
which confirm the results obtained by Dean. 

As pointed out by Yih and Sangster [12] the flow in a 
curved channel behaves like a stratified flow. The centrifugal 
force coupled with the velocity gradient near the wall causes a 
stratification not in density but in specific weight. In the 
region near the concave wall this stratification is unstable. It 
is the instability of this stratification which leads to the 
formation of the familiar Taylor-Gortler vortex pattern. 

It is the purpose of this paper to present the results of a hot 
wire anemometer study of the structure of the secondary flow 
in a curved channel of large aspect ratio. The study is similar 
to that of Tani [13] for the boundary layer on a concave wall. 

Description of Experiment 

Experimental Apparatus. The apparatus for the present 
study is shown schematically in Fig. 1. It consists of a 
plexiglass channel with a contraction inlet followed by a 
straight section 1.22 m long. This is then followed by the 
curved test section. The air flow is maintained by suction 
from a centrifugal blower. A rotometer is installed between 
the outlet of the test section and the blower. The flow cross-
section is 6.35 mm by 254.0 mm for an aspect ratio of 40. The 
straight section immediately down stream of the inlet nozzle is 
of sufficient length for the flow to be fully developed before 
entering the curved section. With the high aspect ratio of the 
flow cross-section the flow is essentially two dimensional 
Poiseuille flow before entering the curved section. 

The curved section of the channel turns through 180 degrees 
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ALL D[f>lENSIONS ARE IN MILLIMETERS

LOCATION OF HOT WIRE
TRAVERSE

ROTOI'1ETER

Fig. 1 Schematic of curved channel

TRAVERSE CARR I AGE

Fig. 2 Photograph of hot wire traverse mechanism

with the radius of curvature of the outer (concave) wall being
304.8 mm and the radius of the inner (convex) wall being
298.4 mm. The hot wire anemometer traverse is mounted
through the convex wall at a location 135 degrees downstream
of the start of the curved section.

At this location a 25 mm wide section running in the
spanwise direction was removed from the convex wall. This
section was replaced by a movable belt of flexible vinyl
plastic. The hot wire probe was mounted through a small hole
in this movable wall section. The hot wire probe was sup­
ported by a cylindrical brass plug which was cemented at one
end to the flexible wall while the other end was mounted in a
two dimensional traversing mechanism.

The brass plug supporting the hot wire probe allows the
probe to slide freely in the radial direction. The ends Of the
flexible movable wall section are supported by a system of
tension adjusting rollers and then attached to the traverse
mechanism. This system permits the hot wire probe and the
flexible wall section to move as a unit in the spanwise
direction while the probe itself can move independently in the
radial direction. Fig. 2 is a photograph of the traverse
mechanism. Additional details of the construction of the
experimental apparatus can be found in the theses of McKee
[14] and Flentie [15].

The probe movement in the spanwise direction is controlled
by a d-c Stepper motor and sweep drive unit. With this
system, the speed of traverse could be controlled over a very

wide range. For these experiments the spanwise traverse was
run at a speed of 0.85 mm/s. The output from the sweep drive
unit also served as a linear displacement transducer which
indicated the spanwise position of the hot wire probe. The
movement in the radial direction is controlled by a hand
operated micrometer unit. The hot wire probe was a sub­
miniature, single wire, boundary layer type probe. The wire
was 0.75 mm long and 0.0038 mm diameter. All
measurements were taken with the wire oriented parallel to
the spanwise direction. With the wire in this orientation, the
measurements represent the magnitude of the vector sum of
the streamwise and radial velocity components. Although the
traverse mechanism was capable of sweeping 152 mm in the
spanwise direction, during the actual measurements it was
found that a 50 mm traverse gave good results. Fig. 3 is a
cross-section of the channel in which the actual area over
which the velocity surveys were taken is indicated. With the
relatively slow traverse speed of 0.85 mm/s a single traverse
required approximately one minute.

The velocity surveys were made as follows: the blower for
the channel was set to provide the desired flow-rate. With the
traverse set at the initial spanwise position, the hot wire probe
was set at the desired radial position by means of the
micrometer. After the initial position of the hot wire probe
had been established, the sweep drive mechanism was turned
on to begin the automatic traverse of the hot wire across the
channel. When the 50 mm traverse was completed, the
traverse was reversed to return the probe to its original
position. The radial position was then moved 0.635 mm by
adjusting the micrometer setting and a new traverse was
begun. The procedure was continued until the probe was at a
position of 0.635 mm from the concave wall. This was the
closest position for traversing the hot wire probe. The data
were recorded directly on an x-y plotter. The output from the
sweep drive unit representing spanwise displacement was
recorded on the x axis and the linearized signal from the hot
wire probe representing velocity was recorded on the y axis.
Each sweep of the traverse mechanism was continuously
recorded as a velocity profile across the channel. It should be
noted that the data were always recorded with the traverse
moving in the same direction. Data were never taken while the

----Nomenclature---------....;..-------------------------

d

Re
R;

spacing between concave and
convex wall
Dean number, (Ud/v) -JdIR;

Reynolds number, Udl v
radius of curvature of the inner
or convex wall
radius of curvature of the outer

U

r

x
y

or concave wall y
mean flow velocity in the
streamwise direction
radial coordinate measured z =
outward from the center of ex =
curvature A =
streamwise coordinate
(Ra - r)/(Ra - R;) v =

transverse coordinate measured
radially inward from the con­
cave wall
spanwise coordinate
wave number, 271" (d)/A
width in the spanwise direction
of a single vortex
kinematic viscosity
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Fig. 3 Cross-section of channel 
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Fig. 6 Velocity profiles for Dean number = 113.5 

traverse was being reserved. This was done to negate any 
uncertainty in traverse position due to mechanical backlash. 
These velocity surveys were conducted for three different flow 
rates corresponding to Dean numbers of 79.2, 94.9, and 
113.5. In each of these cases spanwise velocity traverses were 
made at six different radial positions. 

Flow Visualizations. Photographs of the secondary flow 
were taken by using a flow visualization system employing a 
flow indicator consisting of an aerosol mist of di (2-
ethylhexyl) phthalate (usually referred to as DOP). The 
aerosol generation system is very simple to construct and 
requires only the DOP liquid and a compressed air supply for 
operation. Further details on the construction and operation 
of this system can be found in the works by Griffin and 
Votow [16] and Griffin, et al. [17]. The use of the aerosol mist 
as a flow indicator has several advantages over smoke. 
Combustion is not required for the aerosol as it is for smoke 
and since only a compressed air supply is required the aerosol 
flow indicator can be produced continuously for very long 
periods of time. This ability to run for extended periods of 
time proved to be extremely helpful since the process of 
lighting and photographing proved to be a tedious trial and 
error procedure. 

The aerosol mist was injected into the flow stream at the 
contraction inlet section through several small diameter tubes. 
The visualization was accomplished by illuminating a narrow 
plane in the flow field perpendicular to the mean motion. This 
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Fig. 7 Dean number versus wave number 

illuminated plane was located in the curved section at the 
same position as the hot wire traverse mechanism. 
Illumination of the plane was accomplished by placing a 
truncated cone over a photo flood lamp which provided a 
crudely collimated beam of light. 

The outside of the convex wall was made opaque by 
covering it with strips of black photographic tape except for a 
narrow slit approximately 1 mm wide. The beam of light was 
passed through this slit to illuminate the flow field. The 
camera was mounted so that its optical axis was tangent to the 
flow direction at the location of the illuminated plane. 

Results and Discussion 

The resulting velocity surveys are shown in Figs. 4 to 6. The 
periodic nature of the secondary flow is clearly illustrated. As 
would be expected the amplitude of the periodic motion is 
greatest in the region close to the concave wall, decreasing as 
the channel mid-line is approached. The profile between 
adjacent peaks represents the velocity distribution across a 
single vortex with the minimum between peaks corresponding 
to the region near the core of a vortex. The top three curves in 
each of these figures represent velocity traces at the mid-plane 
between the concave and convex walls and at 0.635 mm on 
either side of the mid-plane. It is interesting to note from the 
top curve, that the velocity profile on the convex side is 180 
degrees out of phase with the velocity profile on the concave 
side of the mid-plane. This is similar to the phenomenon 
observed by Schubauer and Skramstad [18] in their 
measurement of the Tollmien-Schlichting waves in the 
boundary layer on a flat plate. In their measurements, the 
Tollmien-Schlichting waves undergo a 180 degree phase shift 
as the hot wire is moved across the critical layer. The 
Tollmien-Schlichting waves are, of course, longitudinal two 
dimensional waves periodic in time. The Taylor-Goertler 
waves in the present study are three dimensional waves 
periodic in the spanwise spatial coordinate. For a channel, 
such as the one used in the present study, with small spacing 
and large radius of curvature, the basic undisturbed velocity 
profile will be approximately the parabolic Poiseuille profile 
with the velocity maximum located at the mid-plane. This 
base flow on the side of the mid-plane near the concave wall is 
unstable according to Rayleigh's criterion while the flow near 
the convex wall is stable. This simplistic description is used to 
indicate that the mid-plane has more than merely goemetric 
significance to flow. In the sense that it is the location across 
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0.12 0.01 0 

)/(Ro-Ri) 

Fig. 8 Velocity profiles across the channel 

which the phase reversal takes place, it is similar to the critical 
layer for Tollmien-Schlichting waves. As can be seen from the 
figures the phase shift is present at all three Dean numbers. 

Average values of the wave number were calculated from 
the velocity profiles for the three Dean numbers in Figs. 4 to 
6. These values of wave number are shown in Fig. 7 together 
with the neutral stability curve from Reid [11]. As would be 
expected for all three of these values, the wave number falls in 
the unstable or amplified region of the neutral stability 
diagram. It is interesting to note that the wave number is 
approximately 5.1 for all three values of Dean number. This 
seems to agree with Tani's [13] observations with respect to 
the secondary flow in a curved boundary layer, that the wave 
number is independent of flow velocity. It should be pointed 
out that the wave numbers reported here are the average 
values over the total 50 mm of the velocity traverse. As can be 
seen from the velocity profiles in Figs. 4 to 6, the actual wave 
length of a single cycle shows a great deal of variation around 
the average value. 

Velocity profiles across the channel gap have been 
measured at three spanwise locations. The location of the first 
profile is determined by setting the traverse mechanism at the 
location of a maximum in the periodic velocity distribution; 
this is interpreted to be the outer edge of a single vortex. By 
means of the micrometer adjustment velocity measurements 
were taken at intervals of approximately 0.5 mm across the 
channel gap starting at 0.25 mm from the concave wall. When 
this profile had been recorded the traverse was moved to the 
adjacent velocity minimum; this location is interpreted to be a 
line passing through the vortex core. The velocity profile was t 
n measured along this line. The third profile was obtained by 
moving the traverse mechanism to the next velocity 
maximum. This location was interpreted to be the outer edge 
of the same vortex. Again the velocity profile was measured. 
These three velocity profiles are shown in Fig. 8. They 
represent velocity profiles across the channel at three different 
locations covering one complete cycle of the spanwise periodic 
motion. It is interesting to note the high degree of congruence 
of the velocity profiles taken at the two distinct velocity 
maxima. Also apparent is the marked departure from the 
parabolic form of the undisturbed Poiseuille profile. 

Fig. 9 shows photographs of the secondary flow taken at 
two different Reynolds numbers. In these photographs the 
concave wall is at the bottom and the mean flow is into the 
page. Fig. 9(a) is at a Reynolds number of 529 (Dean number 
77.2). As can be seen from the photographs the secondary 
vortices cover the full width of the channel from the concave 
wall to the convex wall. 
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Flg.9(a) Dean number = 69.3

Fig.9(b) Dean number = 77.2

Fig.9 Photograph of vortex pattern for Dean number

Although at the higher Reynolds number the vortex pattern
is somewhat distorted, the average vortex size is about the
same in each case indicating again that the channel geometry
and not the flow Reynolds number seems to control the wave
number or vortex size. Observations of the flow patterns at
much higher Reynolds number (of the order of 1700) in­
dicated that the flow took on a streamwise periodicity in the
form of longitudinal waves superimposed on the secondary
flow which would travel down the vortices in direction of
flow. This condition preceded the fully turbulent flow in the
channel.

Experimental Uncertainty
A detailed investigation of the experimental uncertainties

associated with the results presented here has not been at­
tempted since the purpose of the results was not to deduce
predictive relations but to explore certain phenomena
associated with the flow with curved streamlines. Not­
withstanding the nature of these experiments, estimates have
been made of the uncertainties in the reported experimental
quantities. Uncertainties in the measured values of the
Reynolds numbers arise from fluctuations in the rotometer
used to measure flow. It is estimated that the maximum
identifiable uncertainty in Reynolds numbers is of the order
of 3 percent. The uncertainty in the hot wire velocity

96/VoI.102, March 1980

measurement is estimated from the linearized calibration to be
approximately 4 percent at a velocity of 0.5 m/s. At higher
velocities this uncertainty is lower. The uncertainty in the
radial position of the hot wire probe is due to mechanical
tolerances in the traverse mechanism as well as uncertainty in
reading the micrometer. It is estimated that uncertainty in
radial position is of the order of 3 percent. In assessing the
uncertainty in the spanwise position of the probe, the
significant distance is considered to be of the order of a single
vortex spacing. The dominant factor in the uncertainty in
spanwise position is considered to be half the sensor wire.
This gives an uncertainty of about two percent.
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Turbulent Flow in Axially Rotating 
Pipes 
Experimental results concerning the flow pattern and hydraulic resistance in a 
rotating pipe are described. A fully developed turbulent flow was introduced into a 
long smooth pipe rotating about its axis, and changes of the flow pattern, together 
with hydraulic loss within the pipe, were examined by measuring the velocity and 
pressure distributions across sections at various distance from the pipe entrance. 
Increase of pipe rotation continuously reduces the hydraulic loss and gradually 
changes the axial velocity profile from a turbulent type to a laminar one. Governing 
factors for these changes are discussed. 

1 Introduction 

When fluid enters a pipe rotating about its axis, tangential 
forces acting between the rotating pipe wall and the fluid 
cause the fluid to rotate with the pipe, resulting in a rather 
different flow pattern from that observed in the stationary 
pipe. Examples are found in several engineering applications; 
for example, in the inlet part of fluid machines, heat ex­
changers, and cooling systems of rotors. 

Profiles of flow velocity in a rotating pipe were analyzed by 
Lavan and his co-workers [1], when a fully developed laminar 
flow was introduced to an axially rotating pipe. A reverse 
flow was found in the wall region near the inlet section when 
the swirl rate, defined by the ratio of the tangential velocity of 
the rotating pipe to the mean axial flow velocity, was suf­
ficiently large. 

By measuring the static pressure difference between two 
pressure tappings located upstream and downstream of 
rotating pipes, White [2], Levy [3], and Shchukin [4] studied 
pressure losses in rotating pipes. The magnitude of the loss 
varies considerably with the swirl rate. As the rotating speed is 
increased, the loss is increased if the approaching flow is 
laminar, but is decreased if the approaching flow is turbulent. 

By employing a flow visualization technique, Cannon and 
Kays [5] found that there were two regions in the rotating 
sections when the swirl rate was sufficiently high - one was a 
rotating region near the pipe wall, and the other a nonrotating 
one enclosed in it. It was also found that in the rotating layer 
the turbulence was suppressed and the burst of turbulence on 
the boundary of the two regions was diminished with increase 
of swirl rate. 

For turbulent flows in a rotating pipe, Borishenko, et al. [6] 
measured turbulence intensities by use of hot wire probes and 
showed that they were suppressed by rotation and that the 
suppression extended to the central portion of section as the 
flow proceeded downstream. 

Pedley [7] theoretically analyzed the stability of laminar 
flow in a long pipe and found it unstable at a constant axial 
flow Reynolds number of 82.9. By using a visualization 
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technique and a hot thermister anemometer, Nagib and his co­
workers [8] also confirmed that when a solid body rotation 
was superposed on an axial velocity profile having a 
characteristic of pipe saturated regions in a laminar state, the 
rotation destabilized the flow. The transition Reynolds 
number decreased continuously as the swirl rate of the flow 
increased to N = 4, and when the swirl rate exceeded this 
value, the ideal, solid body rotation profile could not be 
observed. 

Apparently rotation has two counter effects on the flow, 
stabilizing or destabilizing according to the flow conditions in 
the rotating pipe. The present study is concerned with 
determination of the governing parameters, the vector 
velocity fields, and loss coefficients, details of which have 
been reported in a thesis [9]. Turbulent flow developed fully 
in a stationary pipe was introduced to rotating straight pipes, 
and velocity and pressure distributions were measured. 
Hydraulic losses due to the pipe rotation were found to be 
closely related to the flow patterns in the rotating pipes. 

2 Equipment and Method of Experiment 

A schematic outline of the experimental equipment is 
shown in Fig. 1. Water delivered from the overflow tank was 
rectified by a honeycomb and led successively to the upstream 
stationary pipe, rotating pipe, and downstream stationary 
pipe. The rate of flow was measured by an orifice, as shown. 
The length of the upstream stationary pipe was 60D or more, 
in order to obtain a fully developed velocity distribution at the 
rotating pipe entrance, and the length of the downstream 
stationary pipe was 200D. Six different rotating pipe lengths 
were used, namely 30D, 50D, 70D, 120D, HOD, and 160D. 
The pipes used were drawn brass tubes having a hydraulically 
smooth surface. 

To obtain the overall pressure loss across a rotating pipe, 
the upstream tapping was placed 10D upstream from the 
rotating section. The downstream tapping was situated 120D 
downstream from it (a pipe length necessary for velocity 
profile recovery was found experimentally to be about 120D). 

The rotating pipe was separated in two parts by a narrow 
stationary ring of 5 mm length, as shown in the inset of Fig. 1. 
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due to the swirling flow components in the downstream 
stationary pipe. 

If the fluid is considered to be incompressible, and the 
kinetic energy of eddies is neglected, the sum of the useful 
mechanical energy of the fluid can be defined by 

Et=Ek+Ep (3) 

where Ek and Ep denote fluxes of the kinetic and pressure 
energies of fluid 

(STATIONARY PIPE) 

Fig. 1 Schematic outline of experimental equipment 

The ends of the rotating parts were supported by ball 
bearings, and to prevent vibrations due to the rotation the 
pipe was supported by a series of bearings located at intervals 
of 20D or 30D. A cylindrical three-hole pitot tube of 2 mm 
diameter was inserted in the rotating pipe through small holes 
drilled on the stationary ring, and traversed along the 
diametral direction to obtain vector profiles across the sec­
tion. 

The moving pipes on both sides of the stationary ring were 
driven at the same speed by a variable speed motor through 
belts and pulley systems. Mechanical seals were used for the 
junctions between the pipes and the ring to prevent any 
leakage. The experimental range of the axial flow Reynolds 
number was 104 g Re | 2.0 x 105, and the rotational 
Reynolds number was O s R , g 6 . 5 x 104. 

3 Equations to Predict Experimental Results 

The overall hydraulic head loss between two pressure 
tappings, (2) and (7) as shown in Fig. 1, was measured at 
various speeds of rotation and flow rates, and is expressed as 

H=Hi+H3+H2 = \ 
UM + ^ ) VI L2 VI 
— - — ^ r - + «Tr^rr (i) D 2g • - D 2g 

Thus, the coefficient of hydraulic loss of a rotating pipe, £, is 
given by 

*-[>-^mH) (2) 

The hydraulic gradient along the rotating and stationary pipes 
is schematically shown by a solid line in Fig. 2. It is seen that 
the first term in the right-hand side of equation (1) expresses 
the hydraulic loss in the stationary pipes upstream and 
downstream of the rotating pipe, (H{ + H3), when the 
swirling flow component is absent. The second term sums the 
loss in the rotating pipe itself (Hr) and additional loss (Ha) 

Ek = [ 2icprVtl(V} + VI + V})/2]dr 
JO 

EP = \0 27rVzr(p-p0)dr 

(4) 

(5) 

in which p0 and p denote the static pressures at the inlet 
section of the rotating pipe and at any point within a 
downstream section, respectively. 

A balance of the surface stresses and momentum fluxes for 
a control volume of radius r and length dz gives 

TrB 

>Vl/2 
= 2 

Vm V, 

'r/R 

(r/R)7 
[r/R (JL.)2 d r v> K« ] d ( r \ 
Jo V R ) d(Z/R) L Vm Vm J V R ) 

(6) 

pvm 
2 

= 2-
V, 

•r/R 

+ (r/R) r-R-iJmK^-Y +Md(-i)a) 

where it is assumed that flow is taken to be steady, in­
compressible and axisymmetric, and also that az % -p and 
| ra | < < pVeVz. The last assumption will be justified from 
the fact that, in a rotating pipe, the turbulence will be sup­
pressed much by the rotation as is mentioned already and its 
contribution to the shearing stresses can be considered much 
less than those in a stationary pipe. Since Vr and Vz reduce to 
zero on the pipe wall, the values of rr9 and rn on the wall are 
given by 

(7"rt>)o 

pVl/2 'i:G): 
d(Z/R) L V, L Vm 

PVl/2 Jo \R/ d(Z/R) lA Vm > + 

The rate of pipe rotation is defined by the ratio of the cir­
cumferential velocity of the pipe to the mean flow velocity as 

N=W F m =R„/Re (10) 

From equations (8) and (10), (rr6)a/(pV^/2) can be expressed 
by 

-Nomenclature-

D = p i p e d i a m e t e r 
(32.04 mm) 

Ek = kinetic energy flux 
across a section 
(equation (4)) 

Ep = pressure energy flux 
across a section 
(equation (5)) 

E, = useful energy flux 
across a section 
(equation (3)) 

H = h y d r a u l i c loss 
between measuring 

Lx = 

L2 = 

L3 = 

sections located 
u p s t r e a m a n d 
downs t r eam of 
rotating pipe 
axial distance of 
upstream wall tap 
measured from the 
rotating pipe inlet 
length of rotating 
pipe 
axial distance of 
downstream wall 
tap measured from 

rotating pipe the 
exit 

/ = axial distance of 
measuring section 
from rotating pipe 
inlet 

TV = rate of rotation ( = 
R„/Re = U/Vm), 
r e c i p r o c a l of 
Rossby number 

P = dimensionless ex­
pression of pressure 
(equation (17)) 
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pVl/2 

Fig. 2 Chungs of head along the pipe axis 
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The static pressure at any point p, can be calculated ap­
proximately by the following equation which neglects the 
radial mean velocity and turbulent fluctuations 

P=P»-p\n (Vj/r)dr 
<J R 

(12) 

4 Results of Experiment and Discussion 

4.1 Loss Coefficient in Rotating Pipes. Data for the 
coefficient of hydraulic loss, £, for various lengths of rotating 
ducts are shown in Figs. 3(a), (b), and (c). The Reynolds 
number was always larger than 104, so the flow is turbulent 
when the pipes are held stationary. Therefore, for N = 0, the 
curves of £ will coincide with those for a smooth stationary 
pipe, X, approximated by the Blasius equation, X = 0.3164 
Re-o.25 when rotation begins, it is seen that £ deviates 
gradually from X, decreasing with increase of rotational 
speed, Re, if Re < 4 X 104. This results from suppression of 
turbulent motion by the swirling flow component. For short 
rotating tubes, such as L2/D = 30, the reduction is less than 
that for L2/D = 70 and above, and the rate of reduction is 
not consistent with the increase of rotational Reynolds 
number when Re < 3 x 104. 

When Re is reduced, the value of £ also decreases con­
tinuously to a minimum, and then increases again. To the left 
of the minimum points, the curves of £ tend to be parallel 
asymptotically to the laminar line, X = 64/Re; turbulence in 
the flow will be largely suppressed so that viscous effects 
become dominant. If the rotational Reynolds number, R9, is 
kept constant and the flow Reynolds number, Re, is in­
creased, the values of £ increase continuously, ultimately 
exceeding the turbulent friction coefficient of a stationary 
pipe. The loss caused by the rotating pipe is considered to be 
composed of the loss experienced in the rotating pipe and an 
additional loss due to the swirling flow component in the 

downstream stationary pipe, as shown in Fig. 2. The pipe 
rotation has an opposite influence of these component losses: 
the loss within the rotating pipe is decreased but the loss in the 
stationary pipe downstream of the rotating section is in­
creased. For small rotation rates, the decrease is less than the 
increase, and £ becomes larger than X. 

When the rotation rate, N, is increased from a small value, 
the curves of constant N lie at first nearly parallel to the 
turbulent X line, then deviate gradually from it and tend to be 
horizontal. But for N > 1.0, the curves tend to be parallel to 
the laminar X line. 

Values of £ relative to X are shown against the rotation rate, 
N, in Figs. 4(a) and (b). For N < 0.35, though £/X is 
slightly larger than 1.0, the effects of pipe rotation on £/X are 
negligible. £/X decreases with increase of N and reaches to a 
minimum value which depends on L2/D. Scattering of the 
experimental points increases as the rotating length, L2, 
decreases, as is seen in Fig. 4(a), but this scattering becomes 
less and £/X becomes almost independent of the pipe length 
when L2/D exceeds 100 (Fig. 4(b)). The relationships of £/X 
and N, for L2/D s 100, may be approximated by the 
following equations: 

for 
for 
for 

N < 0.35, 
0.35 < JV<0.8 , 
0.8 <N< 1.2, 

£/X = 
£/X = 
£/X = 

1.0 
0.519N'0-52 

0.477V-1'42 

(13) 
(14) 
(15) 

In Figs. 4(a) and (b) the results obtained by Shchukin [4] by 
using the experimental data of White (L2/D = 232) and Levy 
(L2/D = 24) are also shown by a chain line, which exhibits 
nearly an upper limit of the present results. 

With high speed rotation, N > 1.2, turbulence in the wall 
region of the rotating pipe will be largely suppressed, and £/X 
stops decreasing for larger values of N. Values of the critical 
flow Reynolds number corresponding to this saturation of 
£/X increase with Nand with L2/D. From Figs. 3 (b) and (c), 
they are approximated for L2/D S 70 by 

Rec = 1.9 R,,0-90 + 2300, (5 x 104 > R„ > 104) (16) 
which gives a fair agreement with the relationship between 
Rec and Re obtained by Shchukin [4]. 

4.2 Velocity Distributions. If the measured coefficient of 
hydraulic loss of long pipes, including rotating elements, £/X, 
is plotted against the rotation rate, N, as shown in Fig. 4(b), 
the values of £/X are seen to be governed by a single 
parameter, N, when L2/D g 100. This can be explained by 
examining velocity profiles in the rotating pipe. Figure 5 
shows the velocity profiles in a rotating pipe of 120D 
downstream section, when N = 1.0. At this section the in­
fluence of the pipe rotation on flow is considered to be 
saturated and all of the velocity profiles are similar. 

Velocity profiles change along the pipe. This is shown for 
Nomenclature (cont.) 

P 
Po 

P» = 

Q = 
R = 

Re = 

Rec = 
R„ = 

static pressure 
static pressure at the 
center of the inlet 
section 
pressure on the wall 
of rotating pipe 
rate of flow 
pipe radius (= D/2) 
axial Reynolds 
number (= VmD/v) 
critical value of Re 
rotational Reynolds 
number (= UD/v) 

Vr, V. 

e,z 

u 

vm 
v7 

X 

= cylindrical coor­
dinate system 

= c i r c u m f e r e n t i a l 
speed of the pipe 
wall 

= mean flow velocity 
= m e a n v e l o c i t y 

components in r, 6, 
z. directions, re­
spectively 

= c o e f f i c i e n t of 
hydraulic friction of 
stationary pipe 

£ 

P 
rrz> Tr6 

(Trz)o> (rr«)o 

V 

= c o e f f i c i e n t of 
hydraulic loss of 
r o t a t i n g p i p e 
(equation (2)) 

= fluid density 
= shear ing s tress 

components (equa­
tions (6) and (7)) 

= values of rn and rre 

on the pipe wall 
(equations (8) and 
(9)) 

= kinematic viscosity 
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Fig. 3(a) Loss coefficients in rotating pipe, L2/D = 30 uncertainty of 
(Re, $) coordinate (2 x 104, 0.015), uncertainty (±500, ±0.003), coor­
dinate (10s, 0.018), uncertainty (±2500, ±0.0022) 
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Fig. 3(6) Loss coefficients in rotating pipe, L2/D = 70 
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Fig. 3(c) Loss coefficients in rotating pipe, L2ID = 120 

various values of TV by the data in Figs. 6 (a) and (b). 
Profiles measured at the section of l/D = 10 for TV = 0 are 
shown by broken lines. At l/D = 10, the axial velocity profile 
remains flat and the flow in the greater part of the central 
zone is considered to be still in a turbulent state. As l/D in­
creases, the axial velocity profiles deform gradually, due to a 
stabilizing effect of the centrifugal force of the swirling flow. 

Lavan and his co-workers [1] show theoretically that a 
reverse flow is to be expected near the wall at entry, for large 
TV. In the present study, a tuft method did not show such a 
flow, within the range of N g 5 and Re = 105. 

At 100D or more downstream, the velocity profile becomes 
approximately independent of the axial distance from the 
inlet. For reference, the laminar velocity profile in a 
stationary pipe is shown by a chain line in Fig. 6 (b). To check 
the effect of the spin ratio, TV was increased to 5.8, 6.8, and 
8.6 for Re = 6.1 X 1 0 \ 5.1 x 103 and 4.6 X 1 0 \ respec­
tively. The Ve profiles in these cases did not change ap-

20 3.0 4.0 6.0 
N 

Fig. 4(a) Relation between f/A and N L2ID - 30,50, and 70 

2.0 3.0 4.0 

Fig. 4{b) Relation between {/A and N L2ID = 100,120,140, and 160 

preciably from that shown in Fig. 6(b) for l/D = 120; they 
did not approach a forced-vortex type profile, even at the 
section far downstream of l/D = 120. The Vz profiles remain 
aproximately the same shape as in the laminar state, with the 
ratio of Vz to Vm at the pipe center equal to 1.72, 1.79, and 
1.85 for TV = 5.8,6.8, and 8.6, respectively [9]. 

4.3 Pressure Distributions. A dimensionless expression of 
pressure change within the rotating pipe can be given by 

P=(p-p0)/(pVl/2) (17) 

where p is a static pressure at any point in the section, and 
given by equation (12). Changes of pressure on the wall and at 
the center of the rotating pipe along the axis are shown in Fig. 
7. Gradients of the pressure in a stationary pipe at the same 
Reynolds number are shown for turbulent and laminar 
conditions. Even with a low spin ratio of TV = 0.25, the 
pressure curves are seen to be affected considerably by the 
rotation, and with increase of the rotation speed, the curve 
approaches asymptotically that of a laminar flow in a 
stationary pipe. 

4.4 Shearing Stresses. From measured velocities and 
pressures, shearing stresses can be calculated by use of 
equations (6) and (7). The results are shown in Figs. 8(a) and 
(b). The broken line in Fig. 8(a) shows the values of rn in 
the stationary state, the absolute value of which is slightly 
larger than in the rotating state. 

A dimensionless expression of the tangential component of 
the wall stress, 2(rrg)0/(pVlN), for various values of Re and 
Re is shown in a semilog scale in Fig. 9, showing that 
l(Tr9)a/(pV?nN) decays exponentially along the pipe axis. 
When TV is small, the values are seen to be arranged well by a 
solid line, irrespective of the values of Re and R„. This is to be 
expected from the fact that 2(Tre)0/pV?„ in equation (11) can 
be expressed by a product of TV and the axial derivative of 
angular momentum flux in the rotating pipe. From the results 
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Fig. 5 Similarity of velocity profiles at a constant value of N (N = 1.0) 

Fig. 6(a) Changes of velocity profiles along the pipe N = 0.75 (Re = 2 
x 104), uncertainty of (r/R, Vz/Vm), coordinate (0, 1.1), uncertainty 

(±0.02, ±0.022), uncertainty of (r/R, Ve/Vm), coordinate (0, 0), un­
certainty (±0.02, ±0.05) 

Fig. &b) Changes of velocity profiles along the pipe N = 3.0 (Re = 2 
x 104) 
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Fig. 7 Changes of pressures on the wall and at the center of rotating 
pipe (Re = 2 x 104), uncertainty of (l/D, Pw), coordinate (100, -2.2) , 
uncertainty (±0.0004, ±0.2) 
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Fig. 0(a) Distributions of shearing stresses along the pipe r,z (Re = 2 
x 104) 
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Fig. 8(b) Distributions of shearing stresses along the pipe rr(! (Re = 2 
x 104) 

in Fig. 9, 2(Tr0)0/(pV}„N) can be approximated by, when TV < 
0.9, 

2(7rt)0/(pK,2/V) =0.00317 exp[-0.023(//D)] (18) 

For N > 0.9, an appreciable rate of suppression of turbulence 
will be expected in the inlet region of the rotating pipe and a 
larger reduction of 2{Tr0)0/(pB^) will be observed. 

4.5 Energy Fluxes in Rotating Pipe. Changes of E„ Ek, and 
E„ along the pipe axis are calculated by equations (3), (4), and 
(5) and the results are shown in Fig. 10. When Nis increased, 

the rate of change in Ep is decreased, while that in Ek is in­
creased. Thus, along the pipe axis the value of E, is decreased 
for N = 0.25 and 0.75 but is increased for N = 1.75. This 
increase in E, is due to the pipe rotation and it shows that the 
energy supplied by the pipe rotation is larger than that lost in 
the pipe. Most of the energies supplied in the rotating pipe is 
considered to be lost by wall friction in the downstream 
stationary pipe. Supply and consumption of energy will be 
performed by pipe wall through friction and both of them, 
having the opposite sign, may be considered to be roughly in 
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Fig. 10 Changes of Ep, Ek, and E, along the pipe 

the same magnitude, and the effect on the coefficient of 
hydraulic loss £ is considered to be considerably small. 

Conclusions 

Nonswirling turbulent flows were introduced to axially 
rotating pipes, and flow patterns and resistance in the pipe 
were investigated experimentally in the ranges of flow 
Reynolds number 104 s Re g 2.0 x 105 and rotational 
Reynolds number 0 g, Re S 6.5 X 104. 
The results are summarized as follows: 

(1) A swirling flow component given by the rotating pipe 
wall decreases the hydraulic loss undergone in the rotating 
pipes. The reduction in the hydraulic loss is a function of a 
parameter, N = R^/Re, and the rotating pipe length. When 
the pipe length is larger than 100D, the ratio of loss coefficient 
£/A is governed by a single parameter N. In this case £/A 
decreases as N increases from 0.35 to 1.2, and beyond this 
range the suppression of the turbulence is saturated and £/A 
remains substantially unaltered. 

(2) Velocity profiles are governed by a parameter TV and 
an axial distance from the rotating pipe inlet. With a constant 
value of N, the axial velocity distribution approaches the 
laminar flow profile in the downstream region, but the 
ultimate flow profile depends on the degree of turbulence 
suppression. Even when the spin ratio N was increased to 8.6, 
the measured velocity profiles exhibited neither a wholly 
laminar profile in the axial component nor a perfectly forced-
vortex profile in the circumferential component. 
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A P P E N D I X 

Length and Diameter of Pipes. Basic measurements by a 
dial guage of reading accuracy of ±0.03 mm and a three 
meters steel measure of reading accuracy of ± 0.2 mm 

Limits of D: ± 0.1 mm 
Limits of LX,L2, and L3: ± 1.0mm. 

Mean Flow Velocity V,„, Peripheral Speed of Pipe U, and 
Swirl Rate N. The mean flow velocity was determined from 
the volumetric flow rate measured by an orifice, and the 
peripheral speed by a tachometer. The manometer could be 
read to ± 1 mm, and the tachometer to ± 1 rev/min in the 
range of 100 to 1000 rev/min. 

Hence 

Limits of Vm 
Limits of U: 

Limits of TV: 

2 percent 
1 percent 

± 3 percent. 

Local Flow Velocity Components Vz and Ve. The local 
flow velocity was measured by a Pitot tube, and its axial and 
circumferential components were calculated from the 
measured angle against the rotating pipe axis. The reading 
accuracy of the manometer associated with the Pitot tube was 
±1.5 mm and that of the measured angle was ± 2.0 deg. 

In the central region of a section; 
Limits of Vz: ± 2.0 percent 
Limits of Ve: ± 0.05 Vm. 

Near the pipe wall, the error in the measurement was in­
creased on account of a steep velocity gradient. To check the 
measurement, the flow rate obtained by graphical integration 
of the measured velocity profile over a section was compared 
with that derived by an orifice meter, and the difference was 
confirmed to be less than 3 percent. 

Loss Coefficient £. The coefficient of hydraulic loss was 
derived by equation (2) from measured values of Lt, L2, L3, 
D, V,„, A and H. The reading accuracy of H was ± 1.0 
percent and the error in the friction factor A was less than ± 1 
percent. 

At the lowest value of L2(L2/D = 30); 
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Limits of £: ± 20 percent when Re = 2 X 104. 
±12 percent when Re = 105. 

At the highest value of L2(L2/D = 120); 

Limits of £:± 6 percent when Re = 2 x 104. 
±5.5 percent when Re = 105. 

Shearing Stresses in and Tr6. Inaccuracy in the calculated 
shearing stresses was a considerable amount, since each value 
was obtained by equations (6) and (7) with a set of measured 
data. But, repeated measurements for each value of the stress 
have made possible to offer the values on the wall within the 
error of ± 10 percent. 
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Flow Ower Two Circular Disks in 
Tandem 
Placing two or more bluff-bodies in tandem is known to lead, in some cases, to 
configurations with relatively low overall drag. The present study concerns one 
particular case where two disks of unequal diameters, normal to the flow, are 
placed in tandem for the purpose of drag reduction. It shows that very significant 
drag reductions may be achieved by proper sizing of the disk diameters and of the 
gap between them. Placing a properly sized disk at an optimum distance ahead of a 
single reference disk can result in a configuration whose total drag is up to 81 
percent lower than that of the reference disk alone. If the additional disk is placed 
behind into the near-wake of the reference disk, the drag of the two-disk con­
figuration can be up to 70 percent lower than for the reference disk alone. Four 
different flow regimes have been identified, depending on the diameter ratio of the 
two disks, two with relatively steady flows and two with unsteady flows. The ab­
solute drag minimum was found to occur in one of the two steady-flow regimes. 

Introduction 

One of the more intriguing topics in bluff-body 
aerodynamics is the interaction of two bluff-bodies placed in 
tandem. The intriguing facet of this topic is that the flow 
pattern and drag of a tandem configuration cannot be easily 
predicted from the known flow characteristics of the two 
individual bodies that form it. The reason for this is that the 

Previous Related Experiments 

The case of two disks of equal diameters placed in tandem 
was studied some 70 years ago by Eiffel [1]. His results 
showed that the combination of two disks separated by not 
too large a gap produces a smaller drag than a single disk 
alone, as can be seen from the tabulated data below, obtained 
at Re = 190,000: 

LID 
£-£>! + CD2 

WM 

0.0 
1.12 

-

0.5 
1.09 

-0 .15 

1.0 
0.94 

-0 .28 

1.5 
0.81 

-0 .43 

2.0 
1.075 

-0 .16 

2.5 
1.34 

+ 0.11 

3.0 
1.57 

+ 0.37 

rear body is exposed to a flow perturbed and substantially 
altered by the front body and, in addition, there is also some 
upstream influence of the rear body on the front-body 
flowfield. There are many examples of flows over bodies in 
tandem that one can identify in our every day experience; for 
example, two or more neighboring buildings, and the tractor-
trailer combinations one can see on the road. 

In the case of neighboring buildings the bodies are not 
directly connected, and one is interested only in the changes in 
the flowfield of one building as it is affected by the presence 
of its neighbors. In cases like that of tractor-trailers, the 
bodies are directly connected and one is interested in the 
flowfield of, and forces acting on, the entire system of the 
connected bodies, as well. The results presented here pertain 
to one particular combination of two bodies that are directly 
connected. 

1 Currently with Solar Energy Research, Golden, Colo. 
Contributed by the Fluids Engineering Division for publication in the 

Journal of Fluids Engineering. Manuscript received by the Fluids Engineering 
Division, June 28, 1979. 

where Cm and Cm are the drag coefficients of the front and 
rear disks, respectively. The data are uncorrected for model 
blockage (the model-to-jet area ratio was 4 percent). 

It is striking to see that the rear disk experienced a negative 
drag force (acting forward) over a wide range of 
gap/diameter ratio. Eiffel pursued this further and let the rear 
disk slide freely forward on the rod supporting the front disk 
from behind. For x/D < 2.26 the flow field caused the disk to 
move forward, while for larger gaps the rear disk was pushed 
backward, away from the front disk. 

The drag coefficient of a single disk was also obtained by 
Fail, et al. [2] at Re = 400,000. Their data gave the same 
result as Eiffels, CD = 1.12, in this case after a correction, 
using Maskell's procedure [3], for an area blockage of 1.4 
percent (in their closed-jet wind tunnel). 

Another related experiment is that of Roshko and Koenig 
[4], who investigated the effect of diameter ratio and gap 
length on the drag of a flat-faced circular cylinder preceded by 
a concentric circular disk. Their data were obtained at Re = 
100,000-800,000, and were not corrected for model blockage 
of 3.4 percent. They found that one optimal configuration, 
with disk-to-cylinder diameter ratio of 0.75 and gap-to-
cylinder diameter ratio of 0.375, produced an amazing drag 
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ALL DIMENSIONS IN mm 

Fig. 1 Experimented arrangement: disk model, force balance, and 
supporting sting 

reduction: while the cylinder's forebody (the cylinder was 
divided by a transverse cut into a separate short forebody and 
along afterbody) had CDF = 0.75, the addition of the op­
timum disk reduced the forebody drag coefficient of the 
configuration to 0.02. The overall drag coefficient reduction 
from 0.75 to 0.02 is very impressive, especially since it came 
from the addition of another very bluff body. One may 
wonder just how close the drag coefficient of the optimum 
configuration comes to the lower bound of the pressure-drag 
coefficient which would be experienced if the flow were 
potential. It has been shown (Morel [5]) that in potential flow 
the forebody drag coefficient CDF is always negative, tending 
to zero for forebodies followed by long constant-area af­
terbodies. For a body like that used by Roshko and Koenig, 
the potential-flow CDF should have a small negative value. 
The difference between the measured CDF and this potential 
flow CDF is then the total drag coefficient due to real flow 
effects such as flow separation and skin friction. 

Experimental Arrangement 

The tests were conducted in a 500 x 700 mm wind tunnel. 
The model used consisted of a thin circular disk, of diameter 
D2 = 70 mm, attached to a long sting placed on the centerline 
of the tunnel (Fig. 1). The sting diameter was ten percent of 
the disk diameter (wake blockage of one percent). The sting 
was attached to one end of a small strain gage sting balance, 
the other end of which was clamped in a rigid support. The 
sting had a threaded internal hole on its axis allowing in­
sertion of a threaded rod carrying another disk of diameter 
Dlt which could be positioned concentrically at various 
distances ahead of the fixed disk (up to a gap size L = 210 
mm = 3D2). 

The experiment was run for the most part at air speeds of 22 
and 44 m/s, giving Re^, = 100,000 and 200,000. The model 
blockage ratio, ratio of the model area to the test section area, 
was 1.1 percent. 

The front disks used in this study varied from 0.25 to 1.2 
times the rear disk diameter, and there were 16 different 
diameters. The larger disks were made of sheet metal 0.76 mm 

thick {t/D2 = 0.011) with a square side edge. The smaller 
disks were made of a sheet 1.52 mm thick {tlD2 = 0.022), 
with a sharp edge beveled from behind at a 45 ° angle (Fig. 1). 

The outputs from the force balance and from the pressure 
transducer measuring the dynamic pressure were integrated 
simultaneously over intervals of 2 to 10 seconds, depending 
on the particular measurement. 

No blockage correction was applied to the data presented 
here, although a study of the blockage effect was made, 
whose results are discussed below. 

Flow Visualization. Flow patterns around the various disk 
models were made visible by injecting titanium tetrachloride 
smoke at the rear of the front disk. The smoke was produced 
by cartridges manufactured by Mine Safety Appliance Co., 
Pittsburgh, PA. The smoke was injected from a small tube at 
the rear of the front disk. Light was provided by a spot light 
or a flashgun aimed through the transparent roof of the wind 
tunnel. Distracting reflections from the internal wind tunnel 
surfaces were minimized by covering these with flat-black 
paper. 

Photographs of the smoke were made at two speeds: at a 
shutter speed of 1/15 second using the spotlight for 
illumination, and with a flash gun giving exposures of 
nominally 40 /xs. During all visualization experiments, 
Reynolds number based on 70 mm disk diameter was 100,000. 
The corresponding flow speed indicated a 1.5 m distance 
traveled by the mean flow during the slow exposures, while 
for the fast exposures the distance was only about 1 mm. 

Results 

The results are presented in terms of drag and pressure 
coefficients. Their accuracy, based on frequent calibrations, 
which in the case of pressure transducers were performed 
prior to every run, as well as on day-to-day repeatability, is 
CD within ± 0.003 and Cp within ± 0.001. The measurement 
of the ratio L/D2 was accurate to within ± 0.007. 

Single Disk. The first configuration studied was a single 
disk with D2 = 70 mm (the front disk was removed). Its drag 
coefficient showed only a very small variation with Reynolds 
number. A least-square fit to data taken in the range ReD = 
50,000 - 200,000 gave CD = 1.150 - 0.0175 x 10"6 Re, or 
CD = 1.148 at Re = 100,000 and CD = 1.146 at Re = 
200,000. 

It is a well established fact that measurements made in a 
wind tunnel whose test section is bounded by solid walls do 
not duplicate exactly a free-stream (unbounded) environment. 
This is a consequence of the constraining effect of the tunnel 
walls which makes the wall streamlines follow the wall 
contours, rather than being shaped by the flowfield around 
the tested model. This constraining effect is felt at the model 
itself and results in a modification of the local flow field 
around it. The larger the model frontal area, as compared to 
the tunnel cross-section, the stronger is the constraining effect 
the tunnel walls exert by keeping the wall streamlines straight 
and, vice versa, the stronger is the influence of this effect back 
on the flow field around the body. 

-Nomenclature-

Cp = pressure coefficient = (p — 
Po)/<7oo L = 

0D] = drag coefficient based on the 
front-disk diameter p = 

0D2 = drag coefficient based on the q = 
rear-disk diameter Re = 

D = disk diameter 

axial spacing between disks 
(gap) 
static pressure 
dynamic pressure 
Reynolds number based on 
disk diameter 

Subscripts 
1 = front disk 
2 = rear disk 

oo = free stream conditions 
b — base of rear disk 
d = downstream piezometric ring 
F = forebody 
u = upstream piezometric ring 
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L/D2 

Fig. 2 Drag coefficient versus gap length for two disks of equal 
diameter, D2 = 70 mm. - o - Re = 100,000, D data points 
and curve taken from Eiffel [1] (Re = 190,000) 

This effect and its magnitude have been the subject of many 
studies. Among them, one of the best known is the analysis 
performed by Maskell [3], who developed a theory for 
pressure-drag corrrection for the effects of model blockage. 
This analysis which is often being applied to a broad range of 
bluff-body geometries, was in fact developed for the simplest 
ones — thin plates perpendicular to the flow. Therefore, 
Maskell's correction is particularly well suited for application 
to the present configuration, and so it was decided to use it to 
extrapolate the present data to zero-blockage (infinite stream) 
conditions. The correction has the following form: 

•• 1 + eCnb 
JDc 

where CDc is the "correct" (extrapolated) drag coefficient, e is 
a blockage factor, and b is the ratio of model frontal area to 
wind tunnel cross-sectional area (model blockage). The ex­
trapolated drag coefficient at zero blockage was found to be 
CDC = 1.119, using e = 2.75 as recommended by Maskell. 

Two Disks of Equal Diameter. The next study involved two 
disks of equal diameter placed in tandem. The gap between 
the two disks was increased monotonically in small increments 
of 0.1 times D2. The result of this traverse is plotted in Fig. 2, 
which shows that the drag coefficient of the system has a quite 
interesting behavior. It increased slightly at first, reaching a 
maximum at L/D2 = 0.3, and then it decreased sharply. At 
L/D2 = 1.2 the otherwise smooth curve was interrupted by a 
sharp downward jump in CD, indicating a change in flow 
pattern. At this gap length the flow pattern was bistable and 
the time-average drag coefficient could have a value lying 
anywhere between the two extremes. Flow visualization later 
showed that the two possible flow patterns kept switching 
randomly from one to another so that, because of the finite 
integration time, some average CD in between the two limiting 
values was recorded unless a single pattern persisted during 
the entire integration period. The two flow patterns are quite 

well discernible in the smoke photographs presented later. 
The system drag coefficient reached a minimum at about 

L/D2 = 1.55 with a value CD = 0.85, which was 26 percent 
below the single-disk value. Beyond the minimum the drag 
coefficient increased sharply, going towards its limiting value 
of twice that of the single disk. 

Eiffel's data, mentioned earlier, are included for com­
parison in Fig. 2. The actual data points are shown by crosses, 
the broken line is Eiffel's own interpolation. Both curves are 
seen to be quite similar in shape, but there is a consistent shift 
between them, which was very puzzling. After careful con­
sideration we wondered whether the shift was caused by the 
difference in model blockage by the difference in Reynolds 
number (Re = 100,000 here versus 190,000 for Eiffel), by a 
difference in the free-stream turbulence level, which was 
almost certainly substantially higher in Eiffel's simple wind 
tunnel than in ours (less than 0.1 percent). Any of these 
possibilities would introduce an additional parameter into the 
problem, so a closer look was taken to sort out the reasons for 
the differences between Eiffel's and our results. 

The first effect looked at was that of blockage, i.e. the 
constraining effect of the tunnel walls which forces the local 
wall streamlines to be parallel to the tunnel axis. To this end, a 
new test was run with Dx = D2 = 49 mm, giving 50 percent 
less blockage than the original disks. This test was run at two 
Reynolds numbers — 100,000 and 178,000 (the latter con­
stituted the upper limit achievable in the wind tunnel with 
disks of that diameter). The results for Re = 100,000 were 
found to be in very good agreement with those obtained with 
D2 = 70 mm. Thus, the blockage of our model (1.1 percent) 
did not seem to be the reason for the shift. 

On the other hand, there was some evidence of a Reynolds 
number effect in the results obtained with the smaller disks at 
Re = 178,000 in the range L/D2 = 1.0-1.8, in particular on 
the location of the drag discontinuity, which moved to a 
higher L/D2 at the higher Re. To investigate this effect, two 
Reynolds number runs were made with disks Dx = D2 = 70 
mm at two fixed gap widths, L/D2 = 1.1 and 1.3, in the 
vicinity of the drag jump. It was found that the drag coef­
ficient was rather sensitive to Reynolds number in a region Re 
= 180,000 - 215,000 but not elsewhere. At both gap widths 
the drag coefficient was almost constant except for the 
localized Reynolds number region near 200,000 where it 
dropped to lower levels. Thus it appears that the difference 
between the two curves in Fig. 2 may be partly due to the 
Reynolds-number sensitivity of the flow. 

When the flow is sensitive to Reynolds number then it often 
turns out to be sensitive in some degree to the level of tur­
bulence in the free-stream as well. Thus a difference in the 
turbulence level between the two wind tunnels may also have 
been responsible for some of the difference in CD. However, 
this aspect of the problem was considered outside the scope of 
this study. 

In summary, the drag coefficient of a system of two disks 
of equal diameter placed in tandem exhibits the characteristic 
behavior seen in Fig. 2: first an increase with increasing gap 
then a sharp decrease containing an abrupt downward jump, 
a smooth minimum around L/D2 = 1.5, and finally a 
monotonic sharp increase. Comparison to an earlier study of 
this flow configuration by Eiffel [1] shows basic agreement 
with his data but, unfortunately, Eiffel's data were too sparse 
to show whether an abrupt jump on the drag curve was also 
present in his case. The differences in the CD values of Eiffel 
and those of the present investigation seem to be at least 
partly caused by the Reynolds number sensitivity of the ex­
periment. 

Two Disks of Unequal Diameter, Dx/D2 = 0.25 - 1.2. All 
of the data presented in this section were obtained at Re = 
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Fig. 3(a) Regime I 
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Fig. 3(b) Regime II 
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Fig. 3 Drag coefficient versus gap length 

100,000. A parallel set of data was also obtained for Re = 
200,000. For a great majority of the data points the results for 
the two Reynolds numbers agreed to within ACD = 0.01, but 
there were some exceptions at isolated data points between 
L/D2 = 0.4 and 2.2. These exceptions are noted within the 
text as appropriate. The drag coefficient in this case is based 
on the total drag acting on both disks, and is referred to the 
area of the rear disk. 

An initial appraisal of all the data for the various diameter 
ratios led to the conclusions that the data may be conveniently 
divided into four different groups (regimes), depending on the 
ratio Dl /D2, each with a distinct behavior of its own (Fig. 3). 
Plotting the data separately for each regime highlights the 
similarities and differences of the regimes, and it aids the 
clarity of the plots themselves. (Note that the vertical scale in 
Fig. 3 is several times coarser than in Fig. 2). 

The first group, regime I, concerns the cases where the 
added front disk diameter was larger than or equal to the rear 
disk, withZVA. = 1.0, 1.1 and 1.2 (Fig. 3(a)). 

All three curves have a similar behavior, which is the same 
as that described already in the previous section: CD first 

increases with increasing gap, then decreases to a minimum, 
followed by an increase. The sensitivity to Reynolds number 
forDx/D2 = 1.0 was already discussed; forDx/D2 = 1.1 and 
1.2 the sensitivity appeared to be much smaller, with dif­
ferences between Re = 100,000 and 200,000 being limited to 
ACD < 0.02. 

The second group, Regime II, lies in the range 0.8 < Di /D2 
< 1.0 (Fig. 3(b)). It differs from the first group by two 
distinguishing features: a sharp initial drop-off in CD at very 
small gap lengths, and by a much less smooth behavior, 
especially at Re = 200,000. The curve Dx/D2 = 0.95 is 
smooth at Re = 100,000,. but at Re = 200,000 one isolated 
point, LID2 = 0.4 (not shown) was 0.07 below an otherwise 
smooth drag curve. As Ds /D2 decreased further the drag data 
became increasingly more erratic, as may be seen in the curves 
for Dx/D2 = 0.90, 0.85 and 0.825. The flow also became 
rather unsteady and produced model vibration in the region 
L/D2 = 0.3 - 1.1, in which region the data for the two 
Reynolds numbers often differed by up to ACD = 0.10. The 
case of Z), /D2 = 0.825 exhibited a bistable behavior at L/D2 
= 0.6, where CD could be made to switch from a value 0.65, 
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Fig. 4 Minimum drag coefficient versus D1ID2 

characteristic of Regime II, down to 0.25, a value charac­
teristic of Regime III. 

In the third group (Regime III), by contrast, the drag curves 
were very smooth (Fig. 3(c)). In this regime the two-disk 
configuration experienced the lowest drag, reaching a 
minimum of CD = 0.21 atDi/D2 = 0.8 andL/D2 = 0.5. All 
four curves in this regime were similar in shape. However, the 
level of flow unsteadiness was not the same for the whole 
regime, but steadily increased with decreasing Dx. For Dx /D2 
= 0.8 and 0.75 the flow was very steady, but for Dx/D2 = 
0.7 the model started to vibrate at L/D2 = 0.9 at the higher 
flow velocity, and for L/D2 > 1.1 no data could be taken at 
that speed because the vibration became so excessive that 
model failure was feared. A similar behavior was found for 
Dx/D2 = 0.65, but there the vibrations became excessive (at 
the higher speed) already at L/D2 = 0.7. 

The last group (Regime IV), with £>, /D2 < 0.60, differed 
from the previous one by lack of smoothness in the drag data 
(Fig. 3(d)). It was also beset by model vibration that peaked 
around Dx/D2 = 0.5. The vibration was sometimes strong 
enough to prevent measurements, even at the lower flow 
velocity. For Dx/D2 = 0.6 this occurred at L/D2- 0.65, for 
Dx/D2 = 0.55 it was at L/D2 = 0.6 and for Dx/D2 = 0.5 it 
was at L/D2 = 0.4 and 0.5. Thus, the region of maximum 
unsteadiness occurred at smaller and smaller gaps as Dx /D2 
was decreased. The same tendency was present at the higher 
velocity, where the range of L/D2 where the vibrations were 
excessive was, of course, much wider. 

The salient point on each of the curves in Figs. 3(a-d) is the 
drag minimum occurring at one (optimum) gap length. The 
dependence of the coordinates of these points, i.e. the 
minimum CD and the optimum gap length (L/D2)opt, on the 
ratio Dx/D2 is shown in Figs. 4 and 5, respectively. Each of 
the curves Cj^^ and (L/D2)opl consists of three segments 
separated by two discontinuities at the boundaries between 
regimes II, III and IV. There is no discontinuity in either of 
the curves between regimes I and II. Both curves have their 
minimum in regime III. 

The physical reasons for the discontinuities separating 
regimes II, HI and IV may be speculated on, based on our 
flow visualization and results known from other related types 
of separated flows. Both discontinuities can be best analyzed 
in Fig. 5, showing the gap for minimum drag as a function of 
disk diameter ratio. In the low-drag regime III the optimum 
gap is approximately constant with a value of 0.5 D2. Going 
toward regime II, as Dx /D2 increases the flow must turn more 
sharply if is is to attach itself to or skim just over the shoulder 
of the rear disk. This requires a lower and lower pressure 
between the two disks, and at Dx/D2 slightly more than 0.8 
the required pressure differential between the cavity pressure 
and the ambient pressure becomes too large and the flow 
separates from the rear disk. The gap then has to be enlarged 

ol i i i i i i _ 
0 0.2 0.4 0.6 0.8 1.0 1.2 

Dx/D2 

Fig. 5 Disk spacing required for minimum drag versus D-, ID2 

substantially in order to capture the separated shear layer as it 
comes back towards the centerline, as it must because the base 
pressure of the front disk is lower than the ambient pressure. 

The changeover from regime III to regime IV, on the other 
hand, most likely occurs because the front disk diameter 
becomes too small and the shear layer separating from it can 
no longer reach all the way to the rear disk perimeter and skim 
over it. Instead it begins to impact on the front surface of the 
rear disk, and the flow pattern changes to that associated with 
regime IV. 

In summary, the combination of two disks in tandem often 
has a drag lower than a single disk alone. More precisely, if 
the ratio of the front disk diameter Dx to the diameter of the 
rear disk D2 is in the range D{ /D2 = 0 to 1.13 then the drag of 
the combination, at a proper gap size, will be lower than the 
drag of the rear disk alone. The upper limit Dx/D2 = 1.13 
was obtained from the intercept of the curve of C^n^and the 
horizontal broken line CD = 1.147 in Fig. 4. The fact that this 
upper limit is larger than unity means that the added front 
disk may be larger than the rear disk and still produce some 
drag reduction! The absolute drag minimum of 0.21 is ob­
tained with Dx/D2 = 0.8 at a gap L/D2 = 0.54. This 
minimum is 81 percent below the drag coefficient of a single 
disk. 

The present results may also be intepreted in another way, 
as pertaining to the reverse problem of adding a disk of 
diameter D2 behind a disk of diameter Dx, with the purpose 
of achieving a drag reduction. Replotting Figs. 4 and 5 in 
terms of (Cfl,,)min= (CA2)min (D2/Dxf, i.e. the drag coef­
ficient based on the front disk, and (LAD,)opt versus D2/Dx, 
one obtains the plots in Figs. 6 and 7 which show what 
happens in the reversed case. There we see that adding a rear 
disk with D2/Dx = 0 - 1.61, and adjusting the gap to its 
optimum size, will reduce the drag of the combination below 
the drag of the front disk alone. It is somewhat startling to see 
that the addition of a rear disk with a diameter up to 60 
percent larger (2.5 times larger area) can produce a drag 
reduction! This would seem to be against intuition. The 
absolute drag minimum in this case is CD = 0.35, obtained 
withD2/Dx = 1.25 at a gap L/Dx = 0.67. This minimum is 
about 70 percent below the drag coefficient of the single disk. 

Base Pressure Measurements. The fact that the drag 
coefficient of the optimum configuration was as low as 0.22 
prompted a look at the base pressure behind the rear disk. For 
a single disk the base pressure is known to be uniform over the 
rear surface, with Cpb = -0.42 (Fail, et al. [2]) for a circular 
disk (uncorrected for wind tunnel blockage of 1.4 percent). 
Since the minimum drag coefficient of 0.22 is much less than 
0.42 it is likely that the base pressure on the optimum con­
figuration was higher than on a single disk, so that part of the 
drag reduction was caused by an increase in the base pressure 
of the combination. 
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Fig. 6 Minimum drag coefficient (based on upstream disk) versus 

Consequently, it is of interest to consider the two-disk 
configurations as consisting of two parts: (1) a forebody 
formed by the front disk plus the front face of the rear disk, 
and (2) a base - which is just the rear surface of the rear disk. 
The individual components of the total drag attributable to 
these two parts can be separated by simultaneous 
measurements of the total drag coefficient and the base 
pressure. In this study it was assumed that the base pressure, 
which is very uniform on a single disk, is also reasonably 
uniform on the rear surface of the rear disk of a tandem 
combination. Thus the base pressure was measured at only 
one location, near the center of the rear disk, and was 
assumed to be the same over the whole base area. 

Of the 16 different disk ratios, three were picked for this 
study. AH three were in the stable regimes I (Z>, /D2 = 1.0 and 
1.2)andIII(Di/Z?2 = 0-8)- The remaining diameter ratios in 
these two regimes were expected to behave similarly to the 
chosen representatives of their particular regimes. 

In the case of two disks of equal diameters (Fig. 8(a)) the 
results showed that all the drag reduction (except for L/D2 = 
1.3) was due to base pressure increase. The curves of CDF and 
Cpb, in particular the former, suggested an abrupt change of 
flow pattern at L/D2 « 1.25. Up to that point CDF was fairly 
constant, but beyond it there was a steep increase.2 The value 
of CDF for L/D2 = 0 is 0.714, which is quite close to the 
pressure drag coefficient on the front face of a blunt-faced 
circular cylinder aligned with the flow, where CD = 0.74 as 
measured by Roshko and Koenig [4]. The base pressure in­
creased monotonically ( - Cpb decreased) through the region 
around L/D2 = 1.25 and reached a maximum at L/D2 = 2.0 
with Cpb -0.011, i.e. very close to the ambient pressure. 
Faced with these opposing trends of CDF and ( - Cpb) the total 
drag coefficient reached its minimum at L/D2 = 1.55. 

ForZ>,/Z>2 = 1.2 the situation was very similar. Here again 
most of the drag reduction was due to an increase in Cpb, 
which grew monotonically up to the last data point taken 
{L/D2 = 2.54) where it reached Cpb = - 0.034. The total drag 
coefficient reached its minimum earlier, at L/D2 =2 .1 , again 
on account of the rise in CDF which in this case set in around 
L/D2 = 1.9. 

The representative of Regime III (two disks with diameter 
ratio Z>! /D2 = 0.8) showed a behavior different from the first 
two (Fig. 8(b)). There the roles of CDF and Cpb were reversed, 
and it was CDF that accounted for more of the variation in the 
total CD. This case was similar to the previous two in that the 
base pressure maximum (minimum base drag) was reached at 

This behavior may be correlated with the smoke photographs, to be 
discussed in the next section, which show that at L/D2 = 1.23 the flow that 
separated from the front disk abruptly closes in and the separated shear layer 
impinges on the rear disk perimeter. 

(L /DT )( 

0.4 0.8 1.2 
D2/D1 

Fig. 7 Disk spacing required for minimum drag versus D2 /D1 

L /D , 

Fig. 8(a) Drag coefficient, "forebody" drag and base pressure versus 
gap length. DflD2 = 1.0 

L/D2 

Fig. 8(f)) 0 , / D 2 = 0.8, optimum configuration of Roshko and 
Koenig [4] with D1 ID? = 0.75 

gaps where the forebody drag coefficient was already in­
creasing sharply. Consequently, the minimum of the total CD 
occurred well before the base pressure reached its maximum. 
The minimum forebody drag coefficient was recorded at 
L/D2 = 0.375 with a value CDF = 0.033. This last result 
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compares very favorably with the data of Roshko and Koenig
[4] who found, for a parallel-sided afterbody (circular
cylinder) of diameter D2 preceded by a circular disk with
D j /D2 = 0.75, the forebody drag coefficient to have a
minimumatLID2= 0.375 with CDF = 0.02. Their data for
the optimum configuration are shown by a broken line in Fig.
8(b)).

Smoke Visualization

Single Disk. The time-mean picture of the smoke (Fig. 9),
obtained with a IIl5 second exposure, shows the flow
separating at a steep angle to the oncoming stream, generating
a wide separated region, and closing up about 3 disk
diameters downstream. At the widest point the separated
region had a diameter of about 1.65 times the disk diameter
(measured to the center of the band of dense smoke which is
presumed to indicate the location of the shear layer).

Two Disks of Equal Diameter. The next series of 3
photographs (Fig. 10) shows a very interesting situation
occurring at LID2 = 1.23, where the flow switches between
two flow patterns. The pattern in Fig. lO(a) is similar to the
previous one in that a wide wake is formed, which here passes
above the rear disk.

The flow could stay in this pattern for several tens of
seconds before switching to the other pattern that could also
persist for a similar period of time. This second pattern is
shown in Fig. lOeb) and it differs from the first one in that the
shear layer coming from the front disk no longer passes above
the rear disk but is pulled in, skims over the rear disk
perimeter, and forms a narrow wake behind it. This change in
flow pattern is accompanied by a reduction in CD and a
change in the trends of Cpb , CDF and CD (Fig. 8(a)). The
attachment of the shear layer to the rear disk perimeter also
brings about a strong increase in recirculation beween the two
disks (Fig. lOeb)). The last picture in this series (Fig. lO(e))
differs from all other photographs taken, and it probably
captures the transient situation in which the flow changes
form the lower-drag pattern to the higher drag one by ejecting
some of the recirculating fluid from between the two disks.

At the drag minimum, LiD2 = 1.6, the flow (Fig. 11) is
basically of the same type as the second flow pattern discussed
in the previous paragraph: the separated shear layer appears
to still basically skim over the edge of the rear disk, and a
relatively narrow wake is produced.

Two Disks With D1 IDz = 0.8. The flow pattern around the
minimum-drag configuration with LID2 = 0.5, is shown in
Fig. 12. The picture shows a vortex in between the two disks
and the wake behind the rear one narrowing down very
substantially. It is very interesting to note that on this
minimum-drag configuration the dividing streamline between
the two disks is not parallel to the free stream when it attaches
to the rim of the second disk. Instead, it comes down towards
the rim, steering the outside flow toward the centerline; this
contributes to the observed narrowing of the wake behind the
rear disk.

Conclusions

1 Experiments with two disks of different diameters placed
in tandem and connected together showed that very
significant drag reductions from that of a single disk may be
achieved by proper sizing of the disk diameters and of the gap
between them.

2 Placing a second disk of diameter D j ahead of a single
disk of interest with diameter D2 , and choosing D j / D2 == 0.8
and the distance between them 0.54 D2 , results in a con­
figuration with total drag coefficient CD = 0.21 as compared

110/Vo1.102, March 1980

Flg.10(b) Short exposure, lower CD

Flg.10(c) Short exposure, switching of flow patterns

Fig. 11 Two disks In landem, 0 1 /02 = 1.0,LI02 = 1.6, short exposure

to CD = 1.15 for the single disk alone. This represents an 81
percent drag reduction.
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Fig. 12 Two disks In tandem, D1/02 =0.8, L/02 =0.5, short exposure

3 Total drag can also be reduced by placing a second disk of
diameter D2 behind a single disk of interest with diameter D 1 ,

and choosing D2 / D 1 = 1.25 and the distance between them
0.67 D 1 • In this case the addition of the rear disk results in a
70 percent drag reduction, and it is worth emphasizing that
this is achieved by the addition of a disk larger than the
original one. In fact, drag reduction was achieved by the
addition of larger rear disks with up to 2.5 times larger frontal
area than that of the original single disk.

4 Detailed investigation of the two-disk configuration led to
identification of four different operating regimes, depending
on the disk diameter ratio. Among them, the most important

Journal of Fluids Engineering

is regime III (0.65 ::S D 1 / D 2 :s; 0.80) where the most
significant drag reductions were observed (at gaps lengths
around 0.5 D 2).

5 The total drag on the two-disk configurations may be split
into two parts: one acting on the "forebody" consisting of the
front disk plus the front surface of the rear disk, and the
second being the base-pressure drag on the rear surface of the
rear disk. For the case of two equal disks it is shown that
practically all of the drag reduction caused by the addition of
the front disk is due to reduction of the base-pressure drag
(increased base pressure). On the other hand, in the case of the
minimum-drag configuration with D 1/D2 = 0.8 both parts of
the total drag contribute to the large drag reduction.
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Introduction 
This paper reports constant area pressure gradient data for 

air-water vertical flows in the separated-phase (annular and 
annular-mist flows or gas-continuous flows). The reported 
data substantiate the previous hypothesis of this paper's 
authors (reference [1]) concerning the flow pattern transition 
from annular flow to the churning froth flow regime where 
the gas flow can no longer be considered as a continuum flow. 
The combined results of these data and the previous sonic 
velocity data are discussed, particularly with respect to the 
churning-froth flow pattern transition as the liquid-flow 
fraction is increased. Additionally, the data for pressure drop 
between measurement stations are discussed with respect to 
gas velocity and their suggestion of wave effects. 

Pressure Drop and Sonic Velocity Data Combined 
Fig. 1 shows the combined pressure gradient and sonic 

velocity data. These data were obtained from the vertical, 
upward flow of air-water mixtures in the experimental ap­
paratus shown in Fig. 2. The sonic velocity values were ob­
tained by measuring the time required for a shock wave to 
travel between two fixed points in the flow stream. The shock 
waves or pressure disturbances were created by rupturing a 
thin plastic or aluminum diaphragm downstream of the test 
section. Two quartz crystal type pressure transducers were 
utilized to sense the arrival of the shock wave front. Each 
transducer was connected to a charge amplifier which in turn 
was connected to an events-per-unit-time counter which was 
operating in the start-stop mode. The time of travel between a 
30.5 cm fixed distance established the absolute velocity of the 
shock wave through the duct. The propagation speed is a 
function of the pressure difference across the diaphragm and 
the flow velocity. This functional dependence was correlated 
and applied to the indicated experimental speeds. Test con­
ditions for these experiments are tabulated in Table 1. 
Superficial gas velocities (gas velocities computed as though 
the gas were flowing alone, mg/pgAducl) were used in the 
reduction of these data. The most striking result in comparing 
the pressure gradient and sonic velocity data is that a flow 
pattern transition (annular to churn froth) is distinctly in­
dicated at approximately the same quality. This transition is 
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shown by the near-vertical rise in the pressure gradient data 
and in the discontinuity for the sonic velocity data at the low-
quality end of the plot in Fig. 1. These changes in sonic 
velocity and pressure gradient at the transition have not been 
demonstrated previously. The data also show that the sonic 
velocity is a sensitive indicator of the flow pattern transition 
from annular to churning froth because of its essentially 
discontinuous behavior at that point. 

Sonic Velocity Data 
The sonic velocity data are shown in Fig. 3, together with a 

plot of the predicted sonic velocity using a homogeneous, 
thermal equilibrium model. The gas velocities used in the 
reduction of these data were superficial gas velocities, 
corrected by an empirically determined blockage factor 
(reference [2]) which is intended to account for the blockage 
of the gas flow by the liquid phase. The blockage factor, as 
used in this context, accounts for an additional blockage of 
the gas flow by the wavy geometry of the liquid film and by 
dead regions behind droplets (wakes). Consideration of these 
lower-velocity gas volumes, changes the superficial gas 
velocity somewhat from a calculation using void fractions 
only. Further description of this blockage factor and the 
empirical method used to determine its value are discussed in 
reference [2]. The experimental results show that the sonic 
velocity in this flow-pattern region is far from that predicted 
by the homogeneous, thermal equilibrium model and, indeed, 
is essentially that of the sonic velocity in the gas alone. This 
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Fig. 3 Sonic velocity ratio data and homogeneous thermal equilibrium 
model versus quality 

DIAPHRAGM -

Fig. 2 Schematic of experimental system 

indicates that at this shock wave velocity (or at this rate-of-
change of pressure) the energy transport processes are 
essentially negligible. In a two component system, the energy 
transport between the phases necessary to maintain thermal 
equilibrium would, for example, represent a substantial gas 
density change which would, in turn, predict a substantial 
reduction in sonic velocity as the quality was decreased. This 
is indicated by the results from the homogeneous, thermal 
equilibrium model (Fig. 3). These data also tend to support 
the concept and use of a separated flow model in that they 
show that the two-phase flow behavior, under these con­
ditions, is primarily the behavior in the gas phase alone. 
Reference [1] compares the sonic velocity data with predic­
tions from other reported expressions. 

Pressure Drop Data 
The complete pressure-drop data from the experimental 

program are shown in Fig. 4. Superficial gas velocities were 
used in the reduction of the data. The data, which are plotted 

-— Nomenclature 

nondimensionally as the ratio of two-phase drop in pressure 
to the gas only (superficial velocity) drop in pressure, show a 
surprising behavior of this ratio with respect to gas velocity. 

One would expect that for a constant quality an increase in 
the gas velocity (gas mass flow rate increase) would produce a 
higher ratio of two phase to gas only drop in pressure due to 
an increased acceleration in the gas velocity and an additional 
increase in liquid (mass) flow rate. However the opposite is 
seen to occur. The authors believe that the most likely ex­
planation is the effect of liquid-gas interfacial waves and, 
particularly of the formation of large disturbance waves 
which are on the annular liquid film next to the wall and 
travel at a velocity substantially higher than the mean velocity 
of the liquid in the wall film. Somewhat similar findings of 
pressure-drop behavior, which may be a result of the behavior 
of waves, have been reported in references [3, 4, and 5]. 

Note that the dimensionless pressure drop behavior does 
not appear to approach a value of 1.0 at quality of 1.0 for the 
case of the lowest gas velocity band. The reasons are not 
obvious from the data presented. The velocity range of 12-14 
m/s is closely bordering on an unstable, pulsating type flow 
which makes pressure readings difficult. Further, at lower gas 
velocities the data are more sensitive to gas velocity changes 
and the chosen band of velocities was too wide to include in a 
single curve which would show an extrapolated (/\pTP/Apg) 
considerably greater than one. If curves for the 12-14 m/s 
band were to be drawn over the entire quality range there 
should be one curve through the data from 0.33 < x < 0.45 
(at the higher end of the gas-velocity band), another for x = 
0.63 (middle of the gas velocity band), and finally a curve for 
x — 0.88 (at the lower end of the velocity band). These three 
curves would have similar slopes to the curves for the higher 
velocity bands shown. 

aTP/ag 

ApTP/Ap„ 

the ratio of the two-phase sonic velocity to the 
sonic velocity computed in the gas alone 
the ratio of the two-phase pressure-ratio over 
a measured distance in a constant area cir­
cular duct to the pressure-drop computed for 
the gas flowing alone 

g 
x 

1duct 

m„ 

gas velocity 
the quality or gas-mass-fraction of the flow in 
the two-phase mixture 
gas density 
flow duct cross-sectional area 
gas mass flow rate 
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Fig. 4 DImensionless pressure drop ratio versus quality (superficial 
gas velocity) 

Conclusions 
1 A flow pattern transition from annular to churn-froth is 

indicated by both the pressure-drop and sonic velocity data at 
essentially the same flow condition. This flow-pattern change 
is indicated by a marked rise in the pressure-drop data, neither 
of these experimental indications has been previously 
reported. The sonic velocity is a particularly sensitive in­
dicator of this flow-pattern change. 

2 The sonic velocity data show little or no change in value 

for the separated flow region from 100 percent quality down 
to the quality of the flow pattern transition. This indicates 
that the interface transport processes are essentially negligible 
in this region and at this rate of wave propagation or pressure 
change. These data also support the use of the separated flow 
model for this region. Previously reported data using 
"homogeneous" fluid velocities tend to show this behavior 
less sharply. 

3 The pressure-drop data show a gas velocity effect which 
is different than the gas velocity effect one would predict from 
the use of expressions or models similar to that used for 
single-phase flow. This gas-velocity effect may be the result of 
the wave behavior on the liquid film. 

Analysis of Uncertainty 
The limited-sample uncertainty propagation methods of 

Kline and McClintock (reference [6]) were used with 20:1 
odds. The results are tabulated on the appropriate figures. 
Possible fixed errors are included in the uncertainty bands 
given. 
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Prediction of Incompressible Separated 
Boundary Layers Including Viscous-Inviscid 
Interaction1 

H. MCDONALD2 and W. R. BRILEY.3 The authors have 
provided an interesting paper on this difficult flow problem. 
They have suggested an alternate calculation procedure 
worthy of consideration, and have also provided further 
evidence that the behavior of transitional separation bubbles, 
as commonly occur in practical applications, can be 
adequately predicted by numerical solution of the boundary 
layer equations, provided interaction with the free stream is 
accounted for. It is also gratifying to see that their results for 
the transitional separation bubble are in good agreement with 
our solutions (reference [2]) except in the region near tran-
sition-reattachment. 

The authors twice questioned whether our time-dependent 
"interacted direct" approach (reference [2]) deals adequately 
with the "separation singularity," but did not elaborate. We 
observe that although there are differences in detail, the 
steady state flow model used by the authors is in essence the 
same as that we used in reference [2]. The critical feature of 
this flow model is that in the steady state, the boundary 
conditions satisfied are neither "direct" nor "inverse" but 
are "interacted" by means of an iterative solution-dependent 
"elliptic" correction to the pressure field. In the absence of 
interaction, the prevailing view (cf. reference [3]) is that 
solutions of the steady boundary layer equations are singular 
at separation if the boundary conditions are "direct," but 
nonsingular if they are "inverse." On this point, our 
numerical experience was consistent with the results of 
Klineberg and Steger (reference [28]) in that the singularity, 
although present in this uninteracted case, is apparently 
smoothed by low order stream wise truncation error. At the 
time our study was performed, no other results were available 
for guidance in the case of interaction, and although our 
results were not conclusive, it did appear to us that interaction 
removed the separation singularity. Our interacted boundary 
layer results were both qualitatively and quantitatively dif­
ferent from the uninteracted results, and we observed nothing 
resembling the singular behavior with mesh refinement found 
upstream of separation in numerous uninteracted direct 
forward marching solutions. For example, the slope of free 
stream transverse velocity dve/dx at separation should 
become infinite with mesh refinement if a singularity is 
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present. With interacted boundary conditions, although 
halving the mesh did cause a change of about 20 percent in 
this slope, this change is much less than the corresponding 130 
percent increase observed without interaction. In turn, this 
latter increase is both greater than the associated change in 
mesh spacing and is also of the same order as the increases 
found by Pletcher and Dancy (reference [12]) in their unin­
teracted test case. Perhaps more significantly, we were able to 
show that our interacted boundary layer results were in very 
good agreement with a corresponding solution of the Navier-
Stokes equations using the same grid. 

Since the actual boundary condition satisfied by our in­
teracted solutions is the elliptic displacement interaction 
equation rather than an imposed velocity or displacement 
thickness, in the steady state our solution procedure is not 
equivalent to forward marching solution of the steady 
boundary layer equations with direct boundary conditions. 
Prior to convergence, difficulty with the (steady) separation 
singularity is avoided by virtue of time dependence (and 
interaction). The authors seek the same objective by different 
means, and their solution procedure (cf. reference [8]) can be 
characterized as a "direct" iteration procedure (imposing 
velocity to find displacement thickness) for implementing 
"inverse" boundary conditions with the steady equations, 
with further iteration to find the particular set of velocity and 
displacement thickness distribution which satisfies the final 
interaction boundary condition. It therefore does not appear 
to us that the particular algorithm (whether characterized as 
direct, inverse, time-dependent or iterative) for obtaining 
numerical solutions of the steady boundary layer equations is 
relevant to the presence or absence of the separation 
singularity in the final solution when that solution satisfies 
interacted boundary conditions. Evidence of the separation 
singularity is historically limited to solution procedures which 
do not allow for the elliptic interaction process. In light of the 
observations given here, we believe that the evidence obtained 
following our initial study, which tends to confirm that the 
interacted solution is nonsingular (including that of Carter 
and Wornom, reference [6], and the present paper) also tends 
to verify that our reference [2] interacted solutions are 
nonsingular. 

Although in reference [2] our primary interest was to 
determine if interacted boundary layers could represent an 
adequate flow model for thin separation bubbles, rather than 
to find an optimal solution procedure, we originally selected 
the time-dependent solution procedure in preference to 
iterated inverse forward marching for two reasons. These 
were that an adequate iteration procedure for inverse 
treatment of the displacement interaction was not available at 
that time, and that forward marching in the reverse flow 
region requires either further iteration for the streamwise 
convective term or the computational artifice embodied in 
variants of the FLARE approximation, such as used by the 
present authors (see reference [8]). Carter (reference [29]) has 
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found the FLARE (Flugge-Lotz and Reyhner) approximation 
adequate for uninteracted laminar flow having small reverse 
flow velocities (5 percent of the free stream) although he 
encountered noticeable error in a case having reverse flow of 
about 10% of the free stream. In transitional-turbulent 
separation bubbles, the reattachment process is much more 
abrupt than in Carter's laminar test cases, and there is also 
experimental evidence of an intense vortex structure near 
reattachment (Gaster and Young and Horton, cf. reference 
[2]). Experimental fully turbulent boundary layer separation 
data (Simpson, reference [30]) also indicates reverse flow 
velocities greater than 10 percent of the free stream. In view of 
uncertainties deriving from the FLARE approximation, we 
preferred not to use it. In our own predictions of the Gault 
case, we encountered both an intense vortex near reat­
tachment and reverse velocities of about 13 percent of the free 
stream. Recognizing that the flow near reattachment could be 
sensitive to details of the transition-turbulence models used, 
nonetheless we would question whether errors arising from 
the authors' neglect of negative velocities are significant and 
might possibly explain the qualitative differences between 
their solutions and ours, particularly with regard to the local 
flattening of the wall shear distribution near reattachment in 
their solution, which was not observed in either our Navier-
Stokes or interacted boundary layer solutions. 

In addition, the authors noted that when they reduced their 
mesh by 50 percent they observed a much smaller change in 
the computed solution than we observed, also with a 50 
percent mesh reduction. This is not unexpected however, since 
their smallest mesh is ten times smaller than the one we used, 
and both methods have first order streamwise accuracy. 
Further mesh refinement was not possible in our reference [2] 
study due to limited computer resources, although our ex­
perience suggested that further mesh refinement would not 
have altered our conclusions. 

Finally, the authors estimated that their method is about 10 
to 20 times faster than that of reference [2] if the same grid is 
used, but did not elaborate. These factors are obviously well 
worthwhile, and the authors' iteration procedure for treating 
the interaction thus looks promising. Other factors are also 
present, however, and should be taken into account. Since our 
time-dependent approach does not require spatial forward 
marching during the solution process, it was not necessary to 
introduce either the FLARE approximation in the reverse 
flow region, or an ad hoc streamwise linearization procedure 
whereby nonlinear coefficients are lagged during forward 
marching to avoid iteration. Although the linearization error 
is formally of the same order as the first-order spatial dif­
ferencing, this error is cumulative in the forward marching 
process and is not present in the time-dependent approach. 
Since their comparison of efficiency is based only on the same 
number of mesh points, it would be interesting to see how 
their solutions would compare with ours if the same much 
larger step size were used, since users tend to compute with the 
coarsest mesh possible, consistent with their accuracy 
requirements. Although removal of the FLARE and 
linearization errors might be accomplished simultaneously 
with the interaction iteration, this might affect convergence 
and/or convergence rate of the resulting method. Likewise, 
convergence acceleration techniques have become available 
since our 1974 study and may prove beneficial in the time-
dependent approach (reference [31]), but these various 
developments will require further study. 
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Authors' Closure 

The authors wish to thank the discussers for their in­
teresting and thought provoking comments. 

The authors and the discussers apparently disagree on the 
cause of the singularity in the boundary layer equations at 
separation. The authors base their observations primarily 
upon experiences obtained from solving the steady boundary 
layer equations by space marching techniques whereas the 
discussers appear to base their comments upon experiences 
(for separating flows) with the time dependent boundary layer 
equations. Both groups may be guilty of attempting to draw 
conclusions about the techniques used by the other by ex­
trapolation. When space marching techniques are employed 
with the steady boundary layer equations, the preponderance 
of evidence in the literature [28, 32] suggests that the type of 
boundary conditions imposed are crucial. Because of the 
saddle point nature of the singularity, Klineberg and Steger 
[28] and Leal [32] found that they were unable to obtain a 
non-singular solution at separation by specifying the pressure 
gradient even when that pressure gradient corresponded to a 
completely regular flow field. This suggests that no matter 
how "interacted" the pressure gradient may be, if it is held 
fixed during any sweep of a space marching procedure for 
boundary layer equations, the solution becomes singular at 
separation. This occurs for numerical, not physical reasons as 
explained in [28]. It is possible that the time dependent 
method used by the discussers in [2] is exempt from this 
behavior, even as steady state is approached. To determine 
this, the discussers should continue to refine the stream-wise 
grid in their calculation [2] to establish that their solution is 
nonsingular. 

The discussers point out that the actual boundary con­
ditions satisfied by their solution in [2] was the elliptic 
displacement interaction equation. This was not clear to us 
from their paper since equation (2.9) of [2] specifically states 
that the velocity was fixed as a boundary condition for the 
boundary layer equations being adjusted after each time step 
according to the inviscid correction procedure. The discussers 
state that evidence of the separation point singularity is 
historically limited to solution procedures which do not allow 
for the elliptic interaction process. This might be because no 
one has successfully obtained a non-singular solution of the 
steady boundary layer equations with a fixed pressure 
gradient through a separated region upon which to base an 
interaction calculation. Several investigators have used the 
pressure distribution obtained by solutions to the Navier-
Stokes equations [32] or by inverse solutions to boundary 
layer equations [28] as the boundary conditions for a direct 
steady boundary layer calculation only to find the solution 
singular upon careful examination. 

Use of a simultaneous interaction equation has been ob­
served to remove the singularity [12] for a direct method. The 
authors are aware of no clear computational evidence that the 
use of viscous-inviscid interaction alone removes the 
singularity in a direct finite difference steady boundary layer 
calculation scheme so long as the pressure gradient is held 
fixed during each streamwise pass. As mentioned above, the 
discussers' time-dependent scheme [2] may not display this 
behavior but there is no computational evidence available to 
resolve this question. 
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The estimate that our method was 10-20 times faster than 
the method of [2] was based on the observation that the 
method of [2] required about 300 time steps for convergence 
to a steady state solution whereas our method required less 
than 20 iterations for convergence for the Gault case. Our grid 
refinement test (Fig. 9) indicated that our mesh was suf­
ficiently refined for the Gault case but we have no indication 
as to how much coarser the mesh might be made before 
serious deterioration in accuracy is observed. Our guess is that 
the mesh used by the discussers in [2] for the Gault case would 
be too coarse to provide converged (mesh-size independent) 
solutions by our method, but the results shown in Fig. 8 of [2] 
suggest that this same mesh was also too coarse for the 
method used by the discussers. Here again, further 
calculations are needed in order to resolve this question. 

The FLARE treatment of the streamwise derivative and the 
linearizing of the equations by lagging the coefficients were 
approximations which we felt were justified for the flows 
considered in the present paper. On the other hand, it is 
believed that these approximations are not essential for the 
successful and efficient calculation of separation bubbles by 
an inverse boundary layer-viscous-inviscid interaction 
procedure. Clearly, the work of Carter [6] and Cebeci [33] 
indicates that the form of linearization used is not crucial to 
the success of inverse boundary layer procedures and the work 
of Cebeci et al. [34] and Arieli and Murphy [35] supports the 
view that the FLARE approximation might be eliminated 
from the final few iterations by the use of type-dependent 
differencing of the streamwise derivative term. It is estimated 
that such refinements would increase the required computer 
time by about a factor of two and increase the storage 
requirements by about 25-30 percent. 

The steepness of the wall shear stress distribution near 
reattachment seems to depend strongly on the transition 
model used. From Fig. 9 it can be seen that Model A of the 
present paper gives a distribution flatter than shown [2] 
whereas Model B gives one which is steeper. 
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Predictions of Induced Air Flows in Hollow 
Cone Sprays1 

J. H. STUHMILLER.2 This paper contributes to the timely 
study of spray-environment interactions that are so important 
to combustion, drying, and cooling processes. The qualitative 
behavior of the smoke tracer in Fig. 1 to the calculated flow 

By F. Boysan and H. Binark, published in the Sept. 1979 issue of the ASME 
JOURNAL OF FLUIDS ENGINEERING, Vol. 101, pp. 312-318. 

2Group Leader - Fluid Dynamics Group, JAYCOR, Del Mar, Calif. 92014. 

patterns in Figs. 5 and 6 is encouraging and the universal 
nature of the streamfunction contours, when properly nor­
malized, will assist in understanding fuel entrainment. My 
discussion is directed toward the solution techniques em­
ployed. 

The gas flow is formulated as a steady-state problem, while 
the spray droplets are followed individually and in time. It 
would seem that the convergence to a total steady-state 
solution would depend upon the number density of drops 
being followed - only when there are many particles per cell 
will the fluctuations in time due to cell boundary crossings be 
small. Would the authors comment on the number of particles 
followed, number per cell, and the observed effects on 
reaching steady-state? 

The outer edge boundary condition imposed, that both 
velocity components go to zero as the reciprocal of a power of 
the radial distance, is an intriguing one. It seems analogous to 
the radiation boundary conditions used in wave motion 
calculations. There the radiated flux is estimated from interior 
points and used to assign boundary values that will preserve 
the flux. Such a treatment is valid anywhere outside of the 
region of source generation. The condition applied to the 
spray flow, however, is only asymptotically true as R — oo, 
Would the authors comment on how the size of the com­
putational region influenced the flow, especially in the 
neighborhood of the outer boundary? Also, what was the 
variation in the power n, in particular, did n approach 2 on 
the axis? The problem of simulating an unbounded jet in a 
finite computational domain occurs in many applications and 
a good simulated boundary condition would be welcome. 

Finally, I would like to call attention to similar research 
into boiling water reactor cooling sprays being conducted in 
the Fluid Dynamics Group at JAYCOR for the Electric Power 
Research Institute. The approach taken is similar, particle 
differential equations for the gas and ordinary differential for 
the drops with appropriate interphase coupling, but differs in 
that it is time-dependent including the affects of com­
pressibility, heat and mass transfer, gravity, and gas pressure 
gradient forces. The goal is to understand spray collapse in 
steam environments and the results, including an analysis of 
the internal and early sheet flow are discussed in a report to be 
released by EPRI. 

Authors' Closure 

The authors thank Dr. Stuhmiller for his interest in their 
paper. When turbulent diffusion is neglected it can be ex­
pected that all drops of the same size follow a common 
trajectory. Therefore, one set of equations (2), (3), (4), and (5) 
is solved for each size group at the end of a calculation loop. 
It is true that the fluctuations in time, or in the present case 
from one loop to the next of the looping iterative solution 
procedure, due to cell boundary crossings may affect con­
vergence if the particle number density is small. In the present 
problem, however, the lower limit of the number of particles 
per cell was on the order of 105 and no effect of the fluc­
tuations on this quantity on the rate of convergence was 
detected. 

The outer edge boundary condition employed was inspired 
by the existence of an exact solution of the Navier-Stokes 
equations in spherical co-ordinates corresponding to the 
axially symmetric jet and where the streamfunction is 
proportional to the distance from the origin [1], The present 
form of \p variation at large R was chosen to make the 
boundary condition less rigid to suit the present problem. The 
value of the index is on the axis for Rmax = 100 cms was 
around 0.9 for most cases. Since the flow inside the spray 
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The estimate that our method was 10-20 times faster than 
the method of [2] was based on the observation that the 
method of [2] required about 300 time steps for convergence 
to a steady state solution whereas our method required less 
than 20 iterations for convergence for the Gault case. Our grid 
refinement test (Fig. 9) indicated that our mesh was suf­
ficiently refined for the Gault case but we have no indication 
as to how much coarser the mesh might be made before 
serious deterioration in accuracy is observed. Our guess is that 
the mesh used by the discussers in [2] for the Gault case would 
be too coarse to provide converged (mesh-size independent) 
solutions by our method, but the results shown in Fig. 8 of [2] 
suggest that this same mesh was also too coarse for the 
method used by the discussers. Here again, further 
calculations are needed in order to resolve this question. 

The FLARE treatment of the streamwise derivative and the 
linearizing of the equations by lagging the coefficients were 
approximations which we felt were justified for the flows 
considered in the present paper. On the other hand, it is 
believed that these approximations are not essential for the 
successful and efficient calculation of separation bubbles by 
an inverse boundary layer-viscous-inviscid interaction 
procedure. Clearly, the work of Carter [6] and Cebeci [33] 
indicates that the form of linearization used is not crucial to 
the success of inverse boundary layer procedures and the work 
of Cebeci et al. [34] and Arieli and Murphy [35] supports the 
view that the FLARE approximation might be eliminated 
from the final few iterations by the use of type-dependent 
differencing of the streamwise derivative term. It is estimated 
that such refinements would increase the required computer 
time by about a factor of two and increase the storage 
requirements by about 25-30 percent. 

The steepness of the wall shear stress distribution near 
reattachment seems to depend strongly on the transition 
model used. From Fig. 9 it can be seen that Model A of the 
present paper gives a distribution flatter than shown [2] 
whereas Model B gives one which is steeper. 
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Predictions of Induced Air Flows in Hollow 
Cone Sprays1 
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study of spray-environment interactions that are so important 
to combustion, drying, and cooling processes. The qualitative 
behavior of the smoke tracer in Fig. 1 to the calculated flow 

By F. Boysan and H. Binark, published in the Sept. 1979 issue of the ASME 
JOURNAL OF FLUIDS ENGINEERING, Vol. 101, pp. 312-318. 

2Group Leader - Fluid Dynamics Group, JAYCOR, Del Mar, Calif. 92014. 

patterns in Figs. 5 and 6 is encouraging and the universal 
nature of the streamfunction contours, when properly nor­
malized, will assist in understanding fuel entrainment. My 
discussion is directed toward the solution techniques em­
ployed. 

The gas flow is formulated as a steady-state problem, while 
the spray droplets are followed individually and in time. It 
would seem that the convergence to a total steady-state 
solution would depend upon the number density of drops 
being followed - only when there are many particles per cell 
will the fluctuations in time due to cell boundary crossings be 
small. Would the authors comment on the number of particles 
followed, number per cell, and the observed effects on 
reaching steady-state? 

The outer edge boundary condition imposed, that both 
velocity components go to zero as the reciprocal of a power of 
the radial distance, is an intriguing one. It seems analogous to 
the radiation boundary conditions used in wave motion 
calculations. There the radiated flux is estimated from interior 
points and used to assign boundary values that will preserve 
the flux. Such a treatment is valid anywhere outside of the 
region of source generation. The condition applied to the 
spray flow, however, is only asymptotically true as R — oo, 
Would the authors comment on how the size of the com­
putational region influenced the flow, especially in the 
neighborhood of the outer boundary? Also, what was the 
variation in the power n, in particular, did n approach 2 on 
the axis? The problem of simulating an unbounded jet in a 
finite computational domain occurs in many applications and 
a good simulated boundary condition would be welcome. 

Finally, I would like to call attention to similar research 
into boiling water reactor cooling sprays being conducted in 
the Fluid Dynamics Group at JAYCOR for the Electric Power 
Research Institute. The approach taken is similar, particle 
differential equations for the gas and ordinary differential for 
the drops with appropriate interphase coupling, but differs in 
that it is time-dependent including the affects of com­
pressibility, heat and mass transfer, gravity, and gas pressure 
gradient forces. The goal is to understand spray collapse in 
steam environments and the results, including an analysis of 
the internal and early sheet flow are discussed in a report to be 
released by EPRI. 

Authors' Closure 

The authors thank Dr. Stuhmiller for his interest in their 
paper. When turbulent diffusion is neglected it can be ex­
pected that all drops of the same size follow a common 
trajectory. Therefore, one set of equations (2), (3), (4), and (5) 
is solved for each size group at the end of a calculation loop. 
It is true that the fluctuations in time, or in the present case 
from one loop to the next of the looping iterative solution 
procedure, due to cell boundary crossings may affect con­
vergence if the particle number density is small. In the present 
problem, however, the lower limit of the number of particles 
per cell was on the order of 105 and no effect of the fluc­
tuations on this quantity on the rate of convergence was 
detected. 

The outer edge boundary condition employed was inspired 
by the existence of an exact solution of the Navier-Stokes 
equations in spherical co-ordinates corresponding to the 
axially symmetric jet and where the streamfunction is 
proportional to the distance from the origin [1], The present 
form of \p variation at large R was chosen to make the 
boundary condition less rigid to suit the present problem. The 
value of the index is on the axis for Rmax = 100 cms was 
around 0.9 for most cases. Since the flow inside the spray 
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cone has a dominant direction the outflow boundary con­
dition has little influence downstream. In fact it was found 
later that putting n = 1 does not affect the air flow pattern in 
and around the spray to a significant degree [2]. 
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A Calculation Procedure for Three-
Dimensional Viscous, Compressible Duct 
Flows, Parts I and II1 

P. M. SOCKOL.2 I wish to congratulate the authors on 
what I believe to be a very sensible approach to a very difficult 
but practical problem. There is now a growing body of 
evidence which indicates that the pressure field provides the 
dominant elliptic influence in a wide variety of rotational and 
viscous flows. In addition to the present work and that of 
references [1-3] and [1-4], I would like to note two other 
relevant works. In reference [C-l] the results of a number of 
parabolized approaches are compared with solutions of the 
full Navier-Stokes equations for the same two-dimensional 
problems. These results show that even for separated cases 
parabolized treatments of the vorticity equation can produce 
excellent solutions provided that the stream function equation 
is solved elliptically. In reference [C-2] a general solution is 
presented for the case of a small rotational perturbation on an 
arbitrary potential flow. There it is shown that the rotational 
part of the flow is reducible to quadrature along the 
streamlines of the base flow, while the perturbed pressure is 
obtained from a potential, which in turn satisfies an elliptic 
equation in subsonic flow. Thus, there is good reason to 
expect good results from parabolized or marching procedures 
if the pressure is given suitable elliptic treatment. 

Before the present procedure is endorsed for general use, 
however, a couple of points need to be clarified. The com­
parison between calculated and measured results for the 
Stanitz elbow is quite impressive, but for this flow the effect 
of downstream influence does not appear to be significant. 
Hence, the fully parabolic approaches of references [1-9] and 
[C-3] might do just as well and be more efficient. A more 
definitive test case would be a turbomachinery blade row with 
significant loading of the leading or trailing edge. The second 
point relates to the three-dimensional pressure correction 
equation. The numerical technique used for this equation is 
not adequately described and hence it is difficult to judge how 
efficiently elliptic effects are spread throughout the domain in 
cases where they are indeed significant. 

Additional References 
C-l Ghia, K. N., Ghia, U., and Tesch, W. A., "Evaluation of Several 

Approximate Models for Laminar Incompressible Separation by Comparison 
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Author's Closure 

The authors wish to thank Dr. Sockol for his thoughtful 
comments and offer the following discussion in reply. 

At any point in Stanitz' duct the elliptic contribution to the 
local cross-stream pressure gradient is small compared with 
the pressure gradient consistent with the local radius of 
curvature. This is because Stanitz designed his duct with a 
gradual increase and a gradual decrease in the radius of 
curvature. Thus in a sense one could say that the flow in 
Stanitz duct is nearly parabolic and at least the two dimen­
sional, inviscid, incompressible flow could be calculated fairly 
well by assuming for each step that the radius of curvature 
remains constant in a streamwise direction. This is not 
however what the fully parabolic approach in reference 1-9 
does; Patankar's fully parabolic approach is like the marching 
integration part of our duct-flow calculation procedure using 
a uniform estimated pressure. Fig. A shows that, for a fully 
parabolic flow calculation, the pressure difference across the 
duct, as used in the cross-flow momentum equation, is close 
to the partially-parabolic flow solution. However, because the 
pressure corrections are separated, the pressure difference 
across the duct used in the thru-flow momentum equation is 
zero. Thus the calculated velocity is uniform over each cross 
section - a poor approximation at the middle of the bend 
where the velocity actually varies by a factor of two. 

If the flow is truly parabolic, with no pressure influences 
transmitted upstream, then there is no need to use separated 
pressure corrections. Fig. A shows that a marching 
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Fig. A The static pressure difference across Stanitz' duct for two 
dimensional, inviscid, incompressible flow calculated using 13 steps. 

final solution from partially-parabolic calculation; 
used in u^ momentum in fully parabolic calculation with 

separated pressure corrections; 
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cone has a dominant direction the outflow boundary con­
dition has little influence downstream. In fact it was found 
later that putting n = 1 does not affect the air flow pattern in 
and around the spray to a significant degree [2]. 

Additional References 

1 Squire, H. B., Quart. J. Mech. App. Math., Vol. IV, 3-321, 1951. 
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Apr. 1979. 
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parabolized approaches are compared with solutions of the 
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equation in subsonic flow. Thus, there is good reason to 
expect good results from parabolized or marching procedures 
if the pressure is given suitable elliptic treatment. 

Before the present procedure is endorsed for general use, 
however, a couple of points need to be clarified. The com­
parison between calculated and measured results for the 
Stanitz elbow is quite impressive, but for this flow the effect 
of downstream influence does not appear to be significant. 
Hence, the fully parabolic approaches of references [1-9] and 
[C-3] might do just as well and be more efficient. A more 
definitive test case would be a turbomachinery blade row with 
significant loading of the leading or trailing edge. The second 
point relates to the three-dimensional pressure correction 
equation. The numerical technique used for this equation is 
not adequately described and hence it is difficult to judge how 
efficiently elliptic effects are spread throughout the domain in 
cases where they are indeed significant. 
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comments and offer the following discussion in reply. 

At any point in Stanitz' duct the elliptic contribution to the 
local cross-stream pressure gradient is small compared with 
the pressure gradient consistent with the local radius of 
curvature. This is because Stanitz designed his duct with a 
gradual increase and a gradual decrease in the radius of 
curvature. Thus in a sense one could say that the flow in 
Stanitz duct is nearly parabolic and at least the two dimen­
sional, inviscid, incompressible flow could be calculated fairly 
well by assuming for each step that the radius of curvature 
remains constant in a streamwise direction. This is not 
however what the fully parabolic approach in reference 1-9 
does; Patankar's fully parabolic approach is like the marching 
integration part of our duct-flow calculation procedure using 
a uniform estimated pressure. Fig. A shows that, for a fully 
parabolic flow calculation, the pressure difference across the 
duct, as used in the cross-flow momentum equation, is close 
to the partially-parabolic flow solution. However, because the 
pressure corrections are separated, the pressure difference 
across the duct used in the thru-flow momentum equation is 
zero. Thus the calculated velocity is uniform over each cross 
section - a poor approximation at the middle of the bend 
where the velocity actually varies by a factor of two. 

If the flow is truly parabolic, with no pressure influences 
transmitted upstream, then there is no need to use separated 
pressure corrections. Fig. A shows that a marching 
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calculation using an unseparated pressure correction works 
well over the first few steps. However a growing pressure 
oscillation occurs at the exit of the bend. 

Our duct-flow calculation procedure introduces cross-
stream pressure variations into the thru-flow momentum 
equation only after they have been calculated using the 3-D 
pressure-correction equation. The point-by-point relaxation 
procedure used to solve this equation allows elliptic influences 
to be transmitted throughout the entire flow domain each time 
the 3-D pressure-correction equation is solved. 

An Experimental Study of the Flow-Induced 
Motions of a Flexible Cylinder in Axial Flow1 

M. P. PAIDOUSSIS.2 Although the subject of flow-
induced motions of flexible cylinders is axial flow has 
received considerable theoretical attention, there have been 
very few experimental studies. Consequently, this study 
should be applauded both for providing added experimental 
information and for dealing with a particular application of 
considerable practical interest. 

Concerning comparison between experiment and theory 
from the point of view of stability, it must be said that the 
applicability of Pai'doussis' theory [1, 2] to these particular 
experiments is questionable. The reason for this, as the 
authors suspect, is due to the much higher values of LID in 
these experiments, as compared to previous experiments 
where LID was much smaller. Here the dynamics of the 
system are critically dependent on the frictional forces. 
Therefore, such assumptions as that of a constant value for 
frictional coefficients over the whole length of the body, 
which proved to be reasonable for shorter bodies, should be 
examined carefully. So should the forces at the free end. (It is 
recalled that in the theory the effect of the shape of the free 
end was accounted for by a factor / , which is the ratio of the 
actual lift force on the tapered end to the ideal lift that might 
arise if three-dimensional flow effects and separation were 
absent.) It is nevertheless interesting to note that Pai'doussis' 
theory [1,2] predicts that buckling (divergence) does not take 
place for a cantilevered cylinder with a hemispherical end if <; 
0.5), if LID > 40. Hence, theory predicts no divergence for 
the LID involved in the experiments. This is contrary to the 
statement made by the authors, that the theory predicts 
divergence in the range of dimensionless flow velocities 1 < u 
< 10; that statement is only true when applied to considerably 
smaller LID than were used in Ni & Hansen's experiments. 

Moreover, the situation is complicated by the fact that the 
aforementioned theory neglects the effect of the boundary 
layer, which for such lengths as those in the experiments must 
have been quite thick. It was recently shown [3] that the 
boundary layer has "an insulating effect" on the cylinder and 
an important stabilizing effect. In other words, when 
boundary layer effects are considered, divergence is even less 
likely to develop. In this light, the discusser wonders if the 
static divergence observed at u = 30 for the Tygon tube was 
real or not, (i) in view of the considerable difficulty that must 
have been encountered in keeping these long bodies exactly 

By C. C. Ni and R.J . Hensen, published in the December, 1978 issue of the 
JOURNAL OF FLUIDS ENGINEERING, Vol. 100, No. 4, pp. 389-394. 

Professor and Chairman, Department of Mechanical Engineering, McGill 
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neutrally buoyant and (ii) in view of the tendency of small 
irregularities, locked-in stresses, and non-uniformities to 
become exaggerated with increasing flow, as the mean flow 
tends to counteract the flexural restoring forces. Interestingly, 
similar experiments by the authors, with a propylene cable, 
showed no divergence [4], exactly as predicted by theory. 

It should be said that the above concern but a small part of 
the paper and do not distract from its overall value. 
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Authors' Closure 

The authors wish to thank Professor Paidoussis for his 
observations on their recently reported experimental study of 
flow-induced motions of a flexible cylinder in axial flow. As 
he points out, complicating factors such as a cylinder length-
to-diameter ratio (LID) much greater than 40 and a thick 
boundary layer distinguish his pioneering analytical studies 
[1,2] from the present experimental work. Clearly, additional 
theoretical study is required of the fluid-structure interaction 
phenomena which prevail in the circumstances considered in 
the present experiments. 

The authors do wish to emphasize that the observed "static 
divergence" near the downsteam extremity of the flexible 
cylinder appeared to be a real flow-induced deformation 
phenomenon and not the result of irregularities or 
nonuniformities in the test cylinder. The phenomenon was 
repeatable; the cylinder was neutrally buoyant to an excellent 
approximation; and permanent set in the tube wall was 
removed by repeatedly filling it with hot water. 

Analytic Derivation of Static Pressure 
Distribution in Helical Flows1 

EDWARD SILBERMAN.2 One of the writer's students has 
made measurements of turbulence components in a helical 
flow, The writer has examined their influence on calculated 
radial pressure distribution using the method described by 
Kuzay. Data and calculated results are presented in Table 1. 
The data were obtained in a nominal 1 ft diameter helical 
corrugated pipe with air flowing. The helix made an angle of 
59 Vi deg with the pipe axis (where 90 deg would be ordinary 
corrugated pipe). Turbulence measured with a split hot film 
anemometer was used to examine its effect on Kuzay's 
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calculation using an unseparated pressure correction works 
well over the first few steps. However a growing pressure 
oscillation occurs at the exit of the bend. 

Our duct-flow calculation procedure introduces cross-
stream pressure variations into the thru-flow momentum 
equation only after they have been calculated using the 3-D 
pressure-correction equation. The point-by-point relaxation 
procedure used to solve this equation allows elliptic influences 
to be transmitted throughout the entire flow domain each time 
the 3-D pressure-correction equation is solved. 

An Experimental Study of the Flow-Induced 
Motions of a Flexible Cylinder in Axial Flow1 

M. P. PAIDOUSSIS.2 Although the subject of flow-
induced motions of flexible cylinders is axial flow has 
received considerable theoretical attention, there have been 
very few experimental studies. Consequently, this study 
should be applauded both for providing added experimental 
information and for dealing with a particular application of 
considerable practical interest. 

Concerning comparison between experiment and theory 
from the point of view of stability, it must be said that the 
applicability of Pai'doussis' theory [1, 2] to these particular 
experiments is questionable. The reason for this, as the 
authors suspect, is due to the much higher values of LID in 
these experiments, as compared to previous experiments 
where LID was much smaller. Here the dynamics of the 
system are critically dependent on the frictional forces. 
Therefore, such assumptions as that of a constant value for 
frictional coefficients over the whole length of the body, 
which proved to be reasonable for shorter bodies, should be 
examined carefully. So should the forces at the free end. (It is 
recalled that in the theory the effect of the shape of the free 
end was accounted for by a factor / , which is the ratio of the 
actual lift force on the tapered end to the ideal lift that might 
arise if three-dimensional flow effects and separation were 
absent.) It is nevertheless interesting to note that Pai'doussis' 
theory [1,2] predicts that buckling (divergence) does not take 
place for a cantilevered cylinder with a hemispherical end if <; 
0.5), if LID > 40. Hence, theory predicts no divergence for 
the LID involved in the experiments. This is contrary to the 
statement made by the authors, that the theory predicts 
divergence in the range of dimensionless flow velocities 1 < u 
< 10; that statement is only true when applied to considerably 
smaller LID than were used in Ni & Hansen's experiments. 

Moreover, the situation is complicated by the fact that the 
aforementioned theory neglects the effect of the boundary 
layer, which for such lengths as those in the experiments must 
have been quite thick. It was recently shown [3] that the 
boundary layer has "an insulating effect" on the cylinder and 
an important stabilizing effect. In other words, when 
boundary layer effects are considered, divergence is even less 
likely to develop. In this light, the discusser wonders if the 
static divergence observed at u = 30 for the Tygon tube was 
real or not, (i) in view of the considerable difficulty that must 
have been encountered in keeping these long bodies exactly 
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neutrally buoyant and (ii) in view of the tendency of small 
irregularities, locked-in stresses, and non-uniformities to 
become exaggerated with increasing flow, as the mean flow 
tends to counteract the flexural restoring forces. Interestingly, 
similar experiments by the authors, with a propylene cable, 
showed no divergence [4], exactly as predicted by theory. 

It should be said that the above concern but a small part of 
the paper and do not distract from its overall value. 
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to-diameter ratio (LID) much greater than 40 and a thick 
boundary layer distinguish his pioneering analytical studies 
[1,2] from the present experimental work. Clearly, additional 
theoretical study is required of the fluid-structure interaction 
phenomena which prevail in the circumstances considered in 
the present experiments. 

The authors do wish to emphasize that the observed "static 
divergence" near the downsteam extremity of the flexible 
cylinder appeared to be a real flow-induced deformation 
phenomenon and not the result of irregularities or 
nonuniformities in the test cylinder. The phenomenon was 
repeatable; the cylinder was neutrally buoyant to an excellent 
approximation; and permanent set in the tube wall was 
removed by repeatedly filling it with hot water. 

Analytic Derivation of Static Pressure 
Distribution in Helical Flows1 

EDWARD SILBERMAN.2 One of the writer's students has 
made measurements of turbulence components in a helical 
flow, The writer has examined their influence on calculated 
radial pressure distribution using the method described by 
Kuzay. Data and calculated results are presented in Table 1. 
The data were obtained in a nominal 1 ft diameter helical 
corrugated pipe with air flowing. The helix made an angle of 
59 Vi deg with the pipe axis (where 90 deg would be ordinary 
corrugated pipe). Turbulence measured with a split hot film 
anemometer was used to examine its effect on Kuzay's 
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I Inverse Design of Optimal Diffusers With 
I Experimental Corroboration 

T. YANG.2 I am curious about the results of optimum 
design provided by the method proposed in this paper as 
compared to the experimental results listed in the Diffuser 
Data Book published by Creare Inc.3 As specific examples, I 
have considered the cases of blockage parameter of B = 0.1 
and B = 0.02. Two approximations (a) B' = B and (Jb) AS = 
5 = 00 were made to avoid interpolating and extrapolating the 
curves provided by the data book, and one assumption was 
made that a boundary layer profile of l/7th power law exists 
at the inlet of the diffuser. This assumption provides a value 
of the ratio of the displacement thickness to momentum 
thickness of 1.285. Now ReD = 214000 of the data book 
corresponds to Re„, = 4533 for B = 0.1 and Re„, = 1000 for 
B = 0.02. From Fig. A-1, we find the results correspond to 
AR = 2.2 and L/W = 3.5 and Fig. A-2 AR = 3.25 andL/W 
= 7.6. The detailed computations for these numbers are given 
in the Addendum. These two sets of geometrical parameters 
are apparently much too conservative in projecting the 
potential pressure recovery. Perhaps the author should 
elaborate on this comparison. 

A second question is one of stability. The diffuser is 
designed to have cf = 0 at the exit for a given set of inlet 
conditions. Would the flow in this diffuser separate if there is 
a disturbance to thicken the inlet boundary layer? 
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MICHIHIRO NISHI.4 The discusser would like to mention 
the following comments to Mr. Hokenson. 

In this paper, although the author emphasizes the optimal 
skin friction decay for the inverse design of diffusers, his 
calculated results suggest that the boundary layer growth is 
sensitive to the pressure gradient. In the decelerating flow, it is 
proved that the development of boundary layer depends on 
the freestream velocity gradient (or pressure gradient) rather 
than skin friction. Therefore, the deceleration rate of 
freestream with respect to the boundary layer condition is 
important to treat the optimal diffuser geometry. As a 
criterion to evaluate the distribution of freestream velocity 
quantitatively, Senoo and Nishi proposed the deceleration 
rate parameter 6\/\ which is defined as the ratio of 
momentum thickness to the distance where the freestream 
velocity is reduced by 10 percent, and recommended 0,/A -
0.02 where the friction loss is small and the shape factor of 
boundary layer increases moderately [17], If one designs a 
two-dimensional (or axisymmetric) diffuser so that 
deceleration rate 0,/A is kept near 0.02 throughout the dif­
fuser length, the temple bell shape is obtained as the diffuser 
wall geometry [17]. The author and Huo [18] also show that 
this is the good diffuser geometry. However, due to the 
critical design, performance of the temple-bell shape diffuser 
is very sensitive to the boundary layer blockage at the inlet 
[19]. 

In order to achieve high pressure recovery with the shorter 
diffuser length, I introduce a combined diffuser which 
consists of the upstream diffuser component with larger 
divergence angle and the downstream component with smaller 
divergence angle, considering the facts mentioned above and 
that simple form diffuser is desirable. The experimental study 
has been carried out in my laboratory to confirm this design 
method. Fig. A-3 shows the geometries of test diffusers. The 
exit-to-inlet area ratio of each diffuser is 3.8. A 9 deg 
divergence-angle conical diffuser in Fig. A-3 (a) to use for 
comparison has the so-called optimum geometry which 

Note Win Hokenson's paper is the half widths. 

1 2 3 4' 5' 6' 7i 
/Reference Section 
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Re„. = 1000 

- = 103orZ, = 7 8 0 5* 

B' = .02 = — 
hi 

:. 5" = .02 ^ 

and/, = 780 x .02h, = 15.5 h. 

W 
From Fig. 3 — = 3.25 

hi 
4Associate Professor of Mechanical Engineering, Kyushu Institute of 

Technology, Tobata, Kitakyushu, 804 Japan. 
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produces the maximum pressure recovery in a prescribed 
diffuser length [4]. Fig. A-3(b) corresponds the the diffuser 
which is a combination of a 14 deg conical passage and the 9 
deg (14-9 deg diffuser). The distributions of local pressure 
recovery coefficient Cpx (= (px~Pi)/0.5puf-) in these two 
diffusers are shown in Fig. A-4 with circular and triangular 
marks. Solid lines in Fig. A-4 represent the results prediced 
with Senoo-Nishi method [20]. According to the experimental 
results, the 14-9 deg diffuser can achieve as high a pressure 
recovery coefficient as the 9 deg diffuser does, but with 10 
percent shorter length. 
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Author's Closure 

I sincerely appreciate the interest which Professors Nishi 
and Yang have shown in my work and welcome this op­
portunity to respond. 

The two sets of experimental data provided by Prof. Yang 
appear to be sufficiently two-dimensional and incompressible 
for comparison with analysis. The blockages are 0.02 and 
0.10, respectively, with an Re ,̂ = 214,000 and a range of 
aspect ratios. 

For comparison with analysis B', Ree. and L/0, must be 
specified. As Professor Yang suggests, B' — B = 0.02 and 
0.10 is a good approximation. The relevant Reynolds numbers 
for the two sets of data may be computed from: 

Re„. =Re 
2W\ (2W B 

using the terminology in my paper. For a diffuser cross-
sectional aspect ratio of 5.0, which is common to both sets of 
data, the width to hydraulic diameter ratio (2W/D) is 3/5. 
Therefore, Ree. = 1 x 103 and 5 X 103 for data sets one and 
two, respectively. The sensitivity of the analytical results to 
Ree. is not large in this range. 

the final parameter which must be established is L/0, and 
may be calculated from: 
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where LI2W-, is the conventional geometric aspect ratio. 
Therefore, it is possible to superimpose as many analytical 
points on the experimental data as desired by selecting 
(L/lWj) values of interest. For simplicity, LHW^ is chosen 
here to be 10 and 20 for both sets of data. In the first data set 
this leads to L/6j = 1.3 x 103 and 2.6 X 103, respectively, 
whereas L/dj = 2.6 x 102 and 5.2 X 102 for the second set of 
data. 

Entering Fig. 1 of my paper with Ree. = 1 x 103 andL/0, 
= 1.3 x 103,2.6 X 103 leads to Cp( = 'l - Of) = 0.815 and 
0.856, respectively. Following the same procedure with Re9. 
= 5 x 103 and L/6, = 2.6 X 102, 5.2 x 102 results in Cp = 
0.590 and 0.708. 

In order to determine the appropriate area ratios, in­
terpolation of the analytical results is required because of 
their sensitivity to L/6t. For the first set of data at Re6. = 103 

and B = 0.02, the results from Fig. 4 must be rescaled to 
double the blockage. Interpolating between Fig. 3 and a 
rescaled Fig. 4 at L/6, = 1.3 X 103 and 2.6 X 103 leads to 
area ratios of 4.1 and 6.4, respectively. For the second set of 
data, the results of Fig. 2 and a rescaled Fig. 3 (converted 
from B = 0.02 to B = 0.10) are entered with Re„. = 5 X 103 

and interpolated at L/0, = 2.6 X 102 and '5.2 x 102, 
providing area ratios of 3.7 and 4.9. 

When these results are plotted on the data set, the same as 
used by Professor Yang and shown as Figs. A-5 and a-6, it is 
clear that the analysis bounds the experimental diffuser data 
and provides realistic performance goals for an optimally 
configured diffuser. The analysis, which provides a different 
optimally-shaped diffuser at each point along the theoretical 
curves, does not predict an overall optimum pressure recovery 
on each figure; as indicated on some experimental data plots 
for a fixed shape diffuser. Instead, since the separation point 
is analytically tied to the diffuser exit plane, the Cp increases 
monotonically with increasing L/6, for a given B Re„.. 

Note that the reduction in the analytically-indicated op­
timal diffuser angle (going from an average of 17 deg in the 
first data set to 13 deg in the second set, at an L/2Wt = 15.0) 
with increasing Ree. is due to the exposed increased blockage 
effect. Also, when converting the analytical results to these 
type of experimental data correlations, the blockage affects 
both Ree. and LIQ{, with a different functional dependence. 
The effect of blockage on these type experimental plots is, 
therefore, surprisingly complex when compared to its effect 
on the analysis. 

The extent to which the performance of these analytically-
derived diffusers will be degraded by inlet plane disturbances 
must be quantified experimentally. The influence of such 
perturbations on separation is clearly to encourage it, but the 
time-averaged pressure recovery in a diffuser with transitory 
stall is an exceedingly complex phenomenon. 
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Boundary-Layer Theory by H. Schlichting, Seventh Edition, 
(translated by J. Kestin), New York: McGraw-Hill Book 
Company, xxii + 817 pp., 1979. Price $28.00. 

REVIEWED BY ROBERT L. STREET 

Boundary-Layer Theory has held a preeminent place in the 
fluid mechanics literature for almost thirty years. The seventh 
edition, the first to be published first and only in English, 
comes eleven years after the sixth edition. I am sure many of 
us felt that it was "time." 

According to the author the principal thrust of the book is 
"the intent to emphasize and to present theoretical con­
siderations in a form accessible to engineers." In the seventh 
edition he worked to retain the original character of the book 
and "provide the reader with a bird's-eye view of this im­
portant branch of the physics of fluids." These goals are the 
source of both strength and weakness in the book. It already 
contained much of the classic essence of the field. Additions 
and changes had to be balanced against increased heft (now 
over 800 pages) and loss of important fundamentals. The 
result is a compromise. There has been a general updating, 
sharpening of parts of the text, removal of some out-of-date 
material; many new references were added, and a modest 
number of new items have been inserted. Some of the ad­
ditions noted by the author are worth commentary. 

The numerical integration of equations is mentioned 
descriptively (Chap. IV) and discussed for the case of 
boundary-layer equations for laminar and turbulent flows 
(Chap. IX, Sec. i). This latter section is new and gives a good 
description of the numerical technique, leads to the literature, 
and validation of some specific results. However, I wonder if 
eight pages among 800 is proper weight for some of the most 
important methodologies in current practice, an area which 
has spawned innumerable papers and at least four books. 

The sections on the second-order boundary-layer (Chap. 
VII, Sec. f and Chap. IX, Sec. j) are welcome. The latter is 
new; the former revised. Together they gave a "first-order" 
introduction to asymptotic and inner/outer expansions. As 
always in this book, the feel of these text pieces is com­
fortable—clear theory, useful examples, numerical results, 
comparison with experiment, and a sense of the importance of 
the results. 

The treatment of stability in laminar boundary layers has 
been significantly changed (Chap. XVI) in the light of the 
direct solutions available for the 4th order Orr-Sommerfeld 
equation. The previous approach using the inviscid solution 
(for the 2nd order equation) and a viscous correction has been 
eliminated. The concluding remark (Sec. f) to the chapter is a 
fine touch, summarizing the transition process in a boundary 
layer in words and picture. 

In summary, if you do not own an earlier copy of Boun­
dary-Layer Theory and your work involves boundary layers, 

then you should have a copy of the seventh edition. It remains 
the comprehensive treatise and a major source book for 
neophytes and veterans. The blend of mathematics, fun­
damental physics, and experimental results leads the reader to 
understanding of key features, ideas and approaches. Then, 
one can branch to the multitudinous in-depth monographs on 
specific areas. 

The tougher issue is, if you own an earlier edition, should 
you buy the seventh? If you own the sixth, probably not; 
otherwise, yes. 

An Introduction to Viscous Flow by W. E. Hughes, 
Hemisphere Publishing Corp., New York, 1979, 219 pp., 
Price: $22.50. 

REVIEWED BY WARREN M. HAGIST 

This little book, which concentrates on laminar flows in its 
six chapters, is intended for use at the undergraduate level. In 
his preface, Dr. Hughes states that it is suitable as a text for a 
second course (which it is), but the writing is lucid enough so 
that it could easily be used in a first course if the instructor 
were willing to supplement chapter 1 with some of the details 
of the derivations of the integral forms of the basic equations 
and provide additional material on turbulent flows. 

The second chapter begins by discussing and working 
through the Poiseuille and Couette flows from a free-body 
diagram of a fluid element. This is followed by derivations of 
the continuity and momentum equations in differential form 
and a discussion of the deformation and strain rates, 
culminating with the Navier-Stokes equations. The chapter 
concludes with a discussion of non-Newtonian fluids and 
derivations of the velocity distribution in a circular pipe for 
both a power-law fluid and a Bingham plastic. 

Chapter 3 entitled "Hydrodynamic Lubrication" takes the 
student through the usual two-dimensional discussions and 
derivations for the stepped slider, inclined slider, and journal 
bearings. A rather short fourth chapter introduces the student 
to the two-dimensional form of the differential energy 
equation and works out the temperature distributions in 
Couette and Poiseuille flow. It concludes with a derivation of 
the general energy equation and the relationship between it 
and Bernoulli's equation. 

The last two chapters are concerned with boundary layers; 
momentum effects in chapter 5, and thermal effects in chapter 
6. After a general discussion of the boundary layer concept 
and the flow past objects of various shapes, Dr. Hughes 
proceeds through the two-dimensional order of magnitude 
development of the boundary layer equations, the Blasius 
solution, and a third degree polynomial approximate 
solution. Following this is a section on the turbulent boundary 
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layer using the l/7th power velocity profile, and the boundary 
layer with a pressure gradient. The chapter concludes with 
short discussions of stagnation point flow and flow around a 
circular cylinder. The entire treatment is quite good except for 
the short section entitled "Laminar Sublayer" which might 
best have been omitted, and a somewhat carelessly drawn Fig. 
5.1. Chapter 6 develops the thermal boundary layer equations 
in both differential and integral form and examines solutions 
with Prandtl number equal to 1. After a quite thorough 
discussion of the turbulent boundary layer and Reynolds 
analogy, the author works out the solution for free convection 
on a vertical plate. The chapter concludes with a discussion of 
frictional heating in the boundary layer and aerodynamic 
heating. 

Each chapter includes a small number of problems for the 
student (and the instructor) to attempt. Since several of the 
problems say "Discuss. . . " or "What happens if. . . " most 
adopters might hope that a solutions manual is available. 
Even though restricted almost entirely to laminar flows this 
book is a useful addition to the instructional literature in fluid 
mechanics. 

Numerical Methods in Fluid Dynamics, Edited by H. J. Wirz 
and J. J. Smolderen, McGraw-Hill Book Co., New York, 
1978, 399 pp., Price: $35.00. 

REVIEWED BY FRANK M. WHITE 

This book is very interesting but it is not, as the title im­
plies, a textbook on numerical fluid dynamics. Rather, the 
added words "Some Aspects of" would put the book in more 
perspective. It consists of six survey lectures on specialized 
topics given in 1976 in a short course at the von Karm&n 
Institute. Of these six "chapters," three - more than half the 
book - are devoted to transonic flow calculations. Then 
there are three chapters on physiological flows, panel 
methods, and numerical experiments in the Soviet Union, the 
latter two of which also cover some transonic flow 
calculations. 

The transonic flow chapters are "Transonic Flow 
Calculations," by A. Jameson, "Some Recent Progress in 
Transonic Flow Computations," by W. Ballhaus, and 
"Progress in Transonic Flow Computations: Analysis and 
Design Methods for Three-Dimensional Flows," by W. 
Schmidt. All are interesting but there is considerable overlap 
and the primary emphasis is on steady, inviscid wing-body 
flows. Ballhaus briefly treats viscous and unsteady flows. 

Chapter 2 on "Application of Numerical Methods to 
Physiological Flows," by T. J. Mueller, is the best effort at 
introducing, developing, and "teaching" the subject to the 
reader. The equations, boundary conditions, and methods are 
very well discussed along with appropriate biophysical 
considerations, with detailed applications to heart valves and 
artery constrictions. 

Chapter 4 on "Panel Methods in Aerodynamics," by W. 
Kraus is a useful review for readers unfamiliar with the 
technique. A panel method simulates a body shape by 
distributed source or vortex "panels" and then solves the 
potential flow equations by an integral technique. It is a 
special case of the Boundary Integral Method now becoming 
quite popular in solid mechanics applications. Most of the 
results presented were developed at the Messerschmitt-
Bdlkow-Blohm firm in Germany. In these days of Middle 
East unrest, it is rather disconcerting to see on page 277 a 
detailed panel-simulated bomber dropping detailed panel-
simulated bombs. The figure is euphemistically captioned 

"Trajectory of a ballistic store." Let's hope the "stores" are 
merely filled with bread and wine and vitamins for the waiting 
refugees below. 

The final chapter is a 50-page review of Soviet gas-
dynamics numerical experiments by O. M. Belotserkovskii. it 
gives examples of statistical, "large-particle," and continuum 
simulations conducted recently in the Soviet Union. 

The printing and layout of the book are excellent. The 
publishers have succeeded in printing some three hundred 
figures - hand-drawn, computer-plotted, artist-inked - with 
nearly equal quality. Although the topics are specialized, the 
book is quite useful to readers involved with these topics. 

Finite Element Analysis in Fluid Dynamics by T. J. Chung, 
McGraw-Hill Publishing Company, Inc., 416 pp., New York, 
Price: $38.00. 

REVIEWED BY G. A. KERAMIDAS 

Over the past years, the finite element method has been 
developed to a state-of-art with a large number of ap­
plications. A variety of books have been published on the 
theory and application of the finite element method. These 
texts have focused primarily on applications for structures, 
with little or no mention of fluids. A text completely 
dedicated to fluid problems and their treatment by the finite 
element method has been long overdue. The Finite Element 
Analysis in Fluid Dynamics, written by Dr. T. J. Chung, 
successfully gives a uniform and complete presentation of this 
subject area. 

The book is geared toward the graduate level student and 
can be used as an excellent reference for people working on 
advanced applications of the finite element method in fluid 
dynamics. 

The mathematical preliminaries presented in the first 
chapter are useful to establish the basic tools used throughout 
this text. The concept of the variational methods and the 
method of weighted residuals are introduced and the 
derivation of the finite element equations by these methods is 
given. A first discussion on the accuracy of the method is also 
given, with a more detailed error analysis found in the 
chapters to follow. 

The second chapter contains complete and detailed 
presentations of one, two and three dimensional finite 
element models for linear and higher order interpolations 
functions. These derivations are of a general nature and the 
models can be used for solving many types of problems. Thus, 
specific applications are not given in this chapter. 

Mathematical methods for assembling and solving the finite 
element equations are discussed in the third chapter. 
Techniques for handling different types of boundary con­
ditions are also presented. Solutions of three types of 
problems are included and useful examples provide an overall 
view of the finite element analysis. Of special interest is the 
derivation of error estimates in the solution of the different 
types of differential equations. 

In the first three chapters, the author succeeds in giving a 
complete picture of not only the method and how it works, 
but also its applications for solving various types of general 
problems. In the subsequent chapters, specific topics in fluid 
dynamics are presented. A useful review of the theory of fluid 
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